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• Detached divertor solution

• Extend to “AT” Regime

→ Particle control

→ Profile control
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We have a high density divertor solution
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We have a reasonable scientific basis for a conventional long-pulse tokamak divertor
solution at high density (collisional edge, detached)

— Low Te recombining plasma leads to low heat and particle fluxes at wall

— Adequate ash control, compatible with ELMing H–mode confinement

— Appropriate for future tokamaks (e.g. to high density ITER-RC)

— Concerns about simultaneously handling disruptions/ELMs and tritium inventory
which shorten divertor lifetime
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We have a reasonable scientific basis for a conventional long-pulse tokamak divertor
solution at high density (collisional edge, detached)

The challenge is to find self consistent operating modes for other configurations ...

— Low Te recombining plasma leads to low heat and particle fluxes at wall

— Adequate ash control, compatible with ELMing H–mode confinement

— Appropriate for future tokamaks (e.g. to high density ITER-RC)

— Concerns about simultaneously handling disruptions/ELMs and tritium inventory
which shorten divertor lifetime

(U.S. Snowmass working group, July 2000)



Improved confinement and stability can lead to more compact
tokamak designs

Reduced cost ITER
IAM

Reduced cost ITER
LAMITER
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Advanced Tokamak



� Definition evolves as progress is made
— Plasma shapes beyond circular were once “advanced,” now standard
— H–mode was “advanced,” now standard

� A standard tokamak
— Has a peaked current profile (q0 = 1, sawteeth present) characteristic

of ohmic heating
— Therefore has a beta limit βN ≤ 3
— Has standard confinement (L– or H–mode scaling)
— Low bootstrap fraction
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An AT operates at higher H (~3) and βN (~5)



� Definition evolves as progress is made
— Plasma shapes beyond circular were once “advanced,” now standard
— H–mode was “advanced,” now standard

� A standard tokamak
— Has a peaked current profile (q0 = 1, sawteeth present) characteristic

of ohmic heating
— Therefore has a beta limit βN ≤ 3
— Has standard confinement (L– or H–mode scaling)
— Low bootstrap fraction

� An advanced tokamak
— Frees the current profile from the ohmic constraint
— With wall stabilization has potentially βN up to 6
— Exploits transport barriers for improved confinement
— Has bootstrap fractions potentially → 100%
— Potential for steady-state, reduced size fusion systems
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� Plasma shaping (κ,δ,ε) increases the fraction of the total field line tragectory that is in
the high magnetic field region resulting in improvement in the confinement concept

~ 2.5%, ~ 5%, ~ 12.5%, ~ 35%,� β
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Plasma shaping allows higher βN AT operation, requires new divertor
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High - δ divertor

Plasma shaping allows higher βN AT operation, requires new divertor



Shape is important for high pedestal pressure and good confinement
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C–Mod AT operation at βN ~3.5 (no wall stabilization necessary)
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for AT operation
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�  Current profile diffuses to unstable profile �  Density continuously grows at constant β
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control are critical - these are provided by the divertor
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Scanning Probe--
(MACH Tip)

X-Point Sweep Used to 
Obtain 2-D Profiles

Langmuir Probes 
(Ion Flux, Te, Ti )

Bolometer Arrays
IRTV’s  (Several Views)

DIMEs Surface Probe
(Erosion and Deposition)

Pressure Gauges
(Pump Exhaust,
D2 and Impurity) 

DIII–D divertors can compare open (low-δ) and closed (high-δ)
operation with flexible pumping
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RDP 2000 is a closed divertor and reduces core ionization source
(even without cryopumping)
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Experience gained in lower divertor (with DTS) is applied to upper
divertor (with simplified diagnostics)

Attached Plasma
at Low Density
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Magnetic balance can be used for power and particle control
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Divertor Carbon Source Is Reduced, Core Content Is Similar!
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Divertor Carbon Source Is Reduced, Core Content Is Similar!
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Divertor Carbon Source Is Reduced, Core Content Is Similar!
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Puff And Pump In Both The Open And Closed Divertors
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         D2  Puff

D2 Puff Impurity

Exhaust

� Open Divertor

— Argon Enrichment Divertor vs Core (D2 puff)
— Carbor and Argon Radiation Increase

� Closed Divertor

— Also good enrichment
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Impurity Control In AT Plasmas With Careful Tile Shaping
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Heat Flux LOW
on shaped tiles

Heat Flux HIGH
on Edges of
Old Tiles
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Impurity Control In AT Plasmas With Careful Tile Shaping



UN Pumped
L–mode

∇B

AT Scenario Uses Divertor Shapes For Real-time Control
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� Maintain li in L–mode
� Density profile fw NBI absorption
� drsep +2 to raise H–mode threshold



UN Pumped
L–mode

∇B

L– To H–mode
Transition
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drsep ~ 0



UN Pumped
L–mode

∇B

L– To H–mode
Transition

Pumped
H–mode

AT Scenario Uses Divertor Shapes For Real-time Control
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drsep ~ 0 Maintain low ne
drsep ~1 for

pumping



“AT Divertors are not just for heat flux reduction”
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Advances in detached plasmas by this community have made possible a high density
divertor solution (with some caveats, of course!)  ...

Heat flux control in AT plasmas is expected to require impurity flow control

— "Puff and Pump" or active flow control, need progress in understanding flows

— Lots of new, exciting physics in the pedestal and x-point region

— Now divertor particle control is vital for AT modes

— Shaped plasmas are "standard", needed for high performance

— Real Time Shape control enables H-mode power threshold control, particle control

— Current profile control (ECCD) is at the heart of the AT, Impurities are important!
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C-coilSensor
loops

� Ip=1.2 MA, Bt=1.6 T
qmin ~1.7,  q95~5.5  

� βN limited to about 4li (no 
wall limit) by bursty RWM 

� 75 % current non-inductive
>50% bootstrap
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� Higher NBI power improves 
stability and duration

βN~3.8

Wall stabilization avoids the Resistive Wall Mode
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Non-inductive current is needed at the half radius for steady
state operation
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UEDGE shows core refueling fraction (Icore/Idiv) is lower in
closed divertors

�  Neutrals are confined to divertor region by better baffling in RDP and AT divertors


