THE ADVANCED TOKAMAK DIVERTOR

S.L. Allen and the DIII-D team 14th PSI

THE ADVANCED TOKAMAK DIVERTOR

S.L. Allen and the DIII–D team 14th PSI

Outline of Presentation

- Detached divertor solution
- Extend to "AT" Regime
 - → Particle control
 - → Profile control

Data Shows Low Te

Model Shows Low Te

Model Shows Low Te

Recombining Plasma Near Plate (D_{γ}/D_{α})

Model Shows Low Te

Recombining Plasma Near Plate (D_{γ}/D_{α})

Divertor Heat Flux is Reduced

Erosion is Reduced

We have a high density divertor solution

We have a reasonable scientific basis for a conventional long-pulse tokamak divertor solution at high density (collisional edge, detached)

- Low Te recombining plasma leads to low heat and particle fluxes at wall
- Adequate ash control, compatible with ELMing H-mode confinement
- Appropriate for future tokamaks (e.g. to high density ITER-RC)
- Concerns about <u>simultaneously</u> handling disruptions/ELMs and tritium inventory which shorten divertor lifetime

We have a high density divertor solution

We have a reasonable scientific basis for a conventional long-pulse tokamak divertor solution at high density (collisional edge, detached)

- Low Te recombining plasma leads to low heat and particle fluxes at wall
- Adequate ash control, compatible with ELMing H-mode confinement
- Appropriate for future tokamaks (e.g. to high density ITER-RC)
- Concerns about <u>simultaneously</u> handling disruptions/ELMs and tritium inventory which shorten divertor lifetime

The challenge is to find self consistent operating modes for other configurations ...

(U.S. Snowmass working group, July 2000)

Improved confinement and stability can lead to more compact tokamak designs

Improved confinement and stability can lead to more compact tokamak designs

Reduced cost ITER IAM

Advanced Tokamak

An AT operates at higher H (\sim 3) and β N (\sim 5)

- Definition evolves as progress is made
 - Plasma shapes beyond circular were once "advanced," now standard
 - H-mode was "advanced," now standard
- A standard tokamak
 - Has a peaked current profile ($q_0 = 1$, sawteeth present) characteristic $(J \propto T^{3/2})$ of ohmic heating
 - Therefore has a beta limit $\beta_N \le 3$
 - Has standard confinement (L- or H-mode scaling)
 - Low bootstrap fraction

An AT operates at higher H (~3) and β_N (~5)

Definition evolves as progress is made

- Plasma shapes beyond circular were once "advanced," now standard
- H-mode was "advanced," now standard

A standard tokamak

- Has a peaked current profile ($q_0 = 1$, sawteeth present) characteristic $(J \propto T^{3/2})$ of ohmic heating
- Therefore has a beta limit $\beta_N \le 3$
- Has standard confinement (L- or H-mode scaling)
- Low bootstrap fraction

An advanced tokamak

- Frees the current profile from the ohmic constraint
- With wall stabilization has potentially β_N up to 6
- Exploits transport barriers for improved confinement
- Has bootstrap fractions potentially \rightarrow 100%
- Potential for steady-state, reduced size fusion systems

r

Plasma shaping allows higher β_N AT operation, requires new divertor

• Plasma shaping $(\kappa, \delta, \epsilon)$ increases the fraction of the total field line tragectory that is in the high magnetic field region resulting in improvement in the confinement concept

Plasma shaping allows higher β_N AT operation, requires new divertor

• Plasma shaping $(\kappa, \delta, \epsilon)$ increases the fraction of the total field line tragectory that is in the high magnetic field region resulting in improvement in the confinement concept

Shape is important for high pedestal pressure and good confinement

Shape is important for high pedestal pressure and good confinement

Significant progress has been achieved in long pulse AT operation

Significant progress has been achieved in long pulse AT operation

	2001	2002	2003
P _{EC} (MW)	2.3	4.5	7.0
P _{FW} (MW)	3.5	3.5	6.5
P _{NBI} (MW)	4.1	3.8	6.5
β_N	4.0	5.3	5.7
H _{89P}	2.8	3.5	3.5
n/n _G	0.3	0.4	0.4

	2001	2002	2003
P _{EC} (MW)	2.3	4.5	7.0
P _{FW} (MW)	3.5	3.5	6.5
P _{NBI} (MW)	4.1	3.8	6.5
$\beta_{ extbf{N}}$	4.0	5.3	5.7
H _{89P}	2.8	3.5	3.5
<u>n</u> ∕n _G	0.3	0.4	0.4

	2001	2002	2003
P _{EC} (MW)	2.3	4.5	7.0
P _{FW} (MW)	3.5	3.5	6.5
P _{NBI} (MW)	4.1	3.8	6.5
$\beta_{ extbf{N}}$	4.0	5.3	5.7
H _{89P}	2.8	3.5	3.5
<u>n</u> ∕n _G	0.3	0.4	0.4

	2001	2002	2003
P _{EC} (MW)	2.3	4.5	7.0
P _{FW} (MW)	3.5	3.5	6.5
P _{NBI} (MW)	4.1	3.8	6.5
β_{N}	4.0	5.3	5.7
H _{89P}	2.8	3.5	3.5
<u>n</u> /n _G	0.3	0.4	0.4

C–Mod AT operation at β_N ~3.5 (no wall stabilization necessary)

Current profile diffuses to unstable profile

Current profile diffuses to unstable profile

Current profile diffuses to unstable profile

- Current profile diffuses to unstable profile
- 120 100 80 80 40 20 0.0 0.2 0.4 0.6 0.8 1.0
- Density continuously grows at constant β

- Current profile diffuses to unstable profile
- 120 100 80 80 40 20 0 0.0 0.2 0.4 0.6 0.8 1.0
- Density continuously grows at constant β

- Current profile diffuses to unstable profile
- 100

 80

 80

 40

 20

0.4

0.6

8.0

1.0

Density continuously grows at constant β

0.0

0.2

With available ECH power on DIII—D, density and impurity control are critical - these are provided by the divertor

With available ECH power on DIII—D, density and impurity control are critical - these are provided by the divertor

With available ECH power on DIII—D, density and impurity control are critical - these are provided by the divertor

DIII–D divertors can compare open (low- δ) and closed (high- δ) operation with flexible pumping

DIII–D divertors can compare open (low- δ) and closed (high- δ) operation with flexible pumping

RDP 2000 is a closed divertor and reduces core ionization source (even without cryopumping)

RDP 2000 is a closed divertor and reduces core ionization source (even without cryopumping)

Experience gained in lower divertor (with DTS) is applied to upper divertor (with simplified diagnostics)

Attached Plasma at Low Density

Experience gained in lower divertor (with DTS) is applied to upper divertor (with simplified diagnostics)

Attached Plasma at Low Density

Detached Plasma at High Density

Magnetic balance can be used for power and particle control

Magnetic balance can be used for power and particle control

Magnetic balance can be used for power and particle control

New physics in the x-point and private flux region

New physics in the x-point and private flux region

New physics in the x-point and private flux region

Recombination in "Private Flux"

Appreciable T_e, n_e
In this Region

Divertor Carbon Source Is Reduced, Core Content Is Similar!

30 Boronizations have reduced the carbon sputtering yield

The divertor carbon source is reduced by a factor of 4

D. Whyte 07/99

Divertor Carbon Source Is Reduced, Core Content Is Similar!

D. Whyte 07/99

Divertor Carbon Source Is Reduced, Core Content Is Similar!

D. Whyte 07/99

Puff And Pump In Both The Open And Closed Divertors

- Open Divertor
 - Argon Enrichment Divertor vs Core (D₂ puff)
 - Carbor and Argon Radiation Increase
- Closed Divertor
 - Also good enrichment

Puff And Pump In Both The Open And Closed Divertors

Impurity Control In AT Plasmas With Careful Tile Shaping

Impurity Control In AT Plasmas With Careful Tile Shaping

AT Scenario Uses Divertor Shapes For Real-time Control

UN Pumped L-mode

- Maintain ℓ_i in L-mode
- Density profile fw NBI absorption
- drsep +2 to raise H-mode threshold

AT Scenario Uses Divertor Shapes For Real-time Control

AT Scenario Uses Divertor Shapes For Real-time Control

"AT Divertors are not just for heat flux reduction"

Advances in detached plasmas by this community have made possible a high density divertor solution (with some caveats, of course!) ...

- Now divertor particle control is vital for AT modes
- Shaped plasmas are "standard", needed for high performance
- Real Time Shape control enables H-mode power threshold control, particle control
- Current profile control (ECCD) is at the heart of the AT, Impurities are important!

Heat flux control in AT plasmas is expected to require impurity flow control

- "Puff and Pump" or active flow control, need progress in understanding flows
- Lots of new, exciting physics in the pedestal and x-point region

Wall stabilization avoids the Resistive Wall Mode

Non-inductive current is needed at the half radius for steady state operation

UEDGE shows core refueling fraction (I_{core}/I_{div}) is lower in closed divertors

Neutrals are confined to divertor region by better baffling in RDP and AT divertors

