Synergy between fast-ion transport by core MHD and test blanket module fields in DIII-D experiments

W.W. Heidbrink¹, M.E. Austin², C.S. Collins¹, T. Gray³, B.A. Grierson⁴, G.J. Kramer⁴, M.J. Lanctot⁵, A.G. McLean⁶, D.C. Pace⁵, M.A. Van Zeeland⁵

¹University of California Irvine, Irvine, California, USA
²University of Texas at Austin, Austin, Texas, USA
³Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
⁴Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA
⁵General Atomics, San Diego, California, USA
⁶Lawrence Livermore National Laboratory, Livermore, California, USA

E-mail: Bill.Heidbrink@uci.edu

Abstract. Fast-ion transport caused by the combination of magnetohydrodynamic activity and a mock-up test-blanket module (TBM) coil is measured in the DIII-D tokamak. The primary diagnostic is an infrared camera that measures the heat flux on the tiles surrounding the coil. The combined effects of the TBM and four other potential sources of transport are studied: neoclassical tearing modes, Alfvén eigenmodes, sawteeth, and applied resonant magnetic perturbation fields for the control of edge localized modes. A definitive synergistic effect is observed at sawtooth crashes where, in the presence of the TBM, the localized heat flux at a burst increases from 0.36 ± 0.27 to 2.6 ± 0.5 MW/m².

PACS numbers: 52.55.Pi, 52.35.Bj