Advances in the Physics Understanding of ELM Suppression Using Resonant Magnetic Perturbations in DIII-D

M.R. Wade¹, R. Nazikian², J.S. deGrassie¹, T.E. Evans¹, N.M. Ferraro¹, R.A. Moyer³, D.M. Orlov³, R.J. Buttery¹, M.E. Fenstermacher⁴, A.M. Garofalo¹, M.A. Lanctot¹, G.R. McKee⁵, T.H. Osborne¹, M.A. Shafer⁶, W.M. Solomon², P.B. Snyder¹, W. Suttrop⁷, A. Wingen⁶, E.A. Unterberg⁶ and L. Zeng⁸

¹General Atomics, San Diego, California 92186-5608, USA
²Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA
³University of California San Diego, La Jolla, California 92093-0417, USA
⁴Lawrence Livermore National Laboratory, Lawrence, California 94550 USA
⁵University of Wisconsin, Madison, Wisconsin 53706, USA
⁶Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
⁷IPP-Garching, Garching, Germany
⁸University of California Los Angeles, Los Angeles, California 90095-7099, USA

Abstract. Recent experiments on DIII-D have increased confidence in the ability to suppress edge localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITER-like conditions. Complete ELM suppression has been achieved utilizing n=3 RMPs in the ITER baseline scenario. In addition, RMP ELM suppression has been expanded to include plasmas with helium concentrations near 25% and the use of n=2 RMPs. Analysis of the kinetic profile response suggests that ELM suppression is correlated with the coalignment of the $\omega_{\perp e} = 0$ location, an n=3 rational surface, and the top of the pedestal. Modelling predicts that such a co-alignment could potentially lead to island (or island chain) formation just inside the top of the pedestal, inhibiting the growth of the pedestal and thereby maintaining the ELM-free state. Detailed analysis of data obtained during toroidal phase variations of the applied n=3 RMPs have provided further evidence of an island-like structure at the top of the pedestal. In addition, nearly matched discharges with co-neutral-beam-injection (co-NBI) and counter-NBI have demonstrated the importance of the presence of the $\omega_{\perp e} = 0$ location for ELM suppression. In the counter-NBI cases, the toroidal rotation profile is such that there is no $\omega_{\perp e} = 0$ location and ELMs are not suppressed in conditions in which ELM suppression is generally observed with co-NBI.

PACS Numbers: 52.55.Fa, 52.35.Py, 52.55.Tn, 52.55.Rk, 52.30.Cv, 52.40.Hf