Steady State Scenario Development With Elevated Minimum Safety Factor on DIII-D

C.T. Holcomb¹, J.R. Ferron², T.C. Luce², T.W. Petrie², J.M. Park³, F. Turco⁴, M.A. Van Zeeland², M. Okabayashi⁵, C.T. Lasnier¹, J.M. Hanson⁴, P.A. Politzter², Y. In⁶, A.W. Hyatt², R.J. La Haye², M.J. Lanctot²

¹Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA

²General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
³Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
⁴Columbia University, 116th and Broadway, New York, New York 10027, USA
⁵Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543-0451, USA
⁶FAR-TECH, Inc., 10350 Science Center Dr., San Diego, California 92121-1136, USA

Abstract. On DIII-D [J.L. Luxon, 2005 Fusion Sci. Tech. 48 828], a high β scenario with minimum safety factor (q_{\min}) near 1.4 has been optimized with new tools and shown to be a favorable candidate for long pulse or steady state operation in future devices. The new capability to redirect up to 5 MW of neutral beam injection (NBI) from on- to off-axis improves the ability to sustain elevated q_{\min} with a less peaked pressure profile. These changes increase the ideal MHD n=1 mode β_N limit thus providing a path forward for increasing the noninductive current drive fraction by operating at high β_N . Quasi-stationary discharges free of tearing modes have been sustained at $\beta_N = 3.5$ and $\beta_T = 3.6\%$ for two current profile diffusion timescales (about 3 seconds) limited by neutral beam duration. The discharge performance has normalized fusion performance expected to give fusion gain $Q \approx 5$ in a device the size of ITER. Analysis of the poloidal flux evolution and current drive balance show that the loop voltage profile is almost relaxed even with 25% of the current driven inductively, and q_{\min} remains elevated near 1.4. These observations increase confidence that the current profile will not evolve to one unstable to a tearing mode. In preliminary tests a divertor heat flux reduction technique based on producing a radiating mantle with neon injection appears compatible with this operating scenario. 0-D model extrapolations suggest it may be possible to push this scenario up to 100% noninductive current drive by raising β_N . Similar discharges with $q_{\min} = 1.5 - 2$ were susceptible to tearing modes and off-axis fishbones, and with $q_{\min} > 2$ lower normalized global energy confinement time is observed.

PACS Numbers: 52.55.Fa, 52.55.Tn, 52.55.Wq, 52.55.Pi, 52.50.Sw