QUIESCENT H-MODE OPERATION USING TORQUE FROM NON-AXISYMMETRIC, NON-RESONANT MAGNETIC FIELDS

K.H. Burrell¹, A.M. Garofalo¹, W.M. Solomon², M.E. Fenstermacher³, D.M. Orlov⁴, T.H. Osborne¹, J.-K. Park² and P.B. Snyder¹

¹General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
²Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA
³Lawrence Livermore National Laboratory, Livermore, California 94550-0808, USA
⁴University of California-San Diego, La Jolla, California 92093, USA

Abstract. Quiescent H-mode (QH-mode) sustained by magnetic torque from non-axisymmetric magnetic fields is a promising operating mode for future burning plasmas including ITER. Using magnetic torque from \(n = 3 \) fields to replace counter-\(I_p \) torque from neutral beam injection, we have achieved long duration, counter-rotating QH-mode operation with NBI torque ranging continuously from counter-\(I_p \) up to co-\(I_p \) values of about 1 Nm. This co-\(I_p \) torque is about 3 times the scaled torque that ITER will have. This range also includes operation at zero net NBI torque, applicable to RF wave heated plasmas. These \(n = 3 \) fields have been created using coils either inside or, most recently, outside the toroidal coils. Experiments utilized an ITER-relevant lower single-null plasma shape and were done with ITER-relevant values \(\nu_p \sim 0.05, \beta_p T \sim 1\% \) and \(\beta_N = 2 \). Discharges have confinement quality \(H_{98 y^2} = 1.3 \), in the range required for ITER. Preliminary low \(q_{95} = 3.4 \) QH-mode plasmas reached fusion gain values of \(G = \frac{\beta_N}{H_{89}} \frac{q_{95}^2}{q_{95}^2} = 0.4 \), which is the desired value for ITER; the limits on G have not yet been established. This paper also includes the most recent results on QH-mode plasmas run without \(n = 3 \) fields and with co-\(I_p \) NBI; these shots exhibit co-\(I_p \) plasma rotation and require NBI torque \(\geq 2 \) Nm. The QH-mode work to date has made significant contact with theory. The importance of edge rotational shear is consistent with peeling-ballooning mode theory. We have seen qualitative and quantitative agreement with the predicted NTV torque.