Characterization of Neutral-Beam Induced D_{α}

Emission on DIII-D

B. A. Grierson¹, K. H. Burrell², W. M. Solomon¹,

N. A. Pablant¹ and W. W. Heidbrink³

¹Princeton Plasma Physics Laboratory, Princeton University,

Princeton, NJ 08543-0451, USA

²General Atomics, P.O. Box 85608, San Diego, CA 92186-5608

³University of California, Irvine, CA 92697

E-mail: bgriers@pppl.gov

Abstract. D_{α} emission from neutral beam heated tokamak discharges in DIII-D

[J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is characterized for evaluation of physically

relevant main ion plasma parameters, such as deuterium temperature and toroidal

rotation velocity. The spectral analysis takes into account passive D_{α} emission from

the plasma edge and active emission from neutral beam injection. The interpretation of

the spectral analysis is assisted by a complete physics model of the plasma environment.

The result of the analysis is that D_{α} light emitted from charge-exchange between bulk

ions and beam neutrals and halo neutrals can be quantitatively interpreted to extract

accurate measurements of the thermal deuterium ion temperature and toroidal rotation

velocity in a wide range of plasma conditions.

PACS numbers: 52.25.Fi, 52.55.Fa, 52.70.Kz