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Abstract. Recent progress on ITER steady-state (SS) scenario modeling by the ITPA-

IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities 

for the two steady state scenarios (weak shear scenario and internal transport barrier 

scenario) are discussed in terms of transport, kinetic profiles, and heating and current 
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drive sources using various transport codes. Weak magnetic shear scenarios integrate the 

plasma core and edge by combining a theory-base transport model (GLF23) with scaled 

experimental boundary profiles. The edge profiles (at normalized radius 

€ 

ρ =  0.8–1.0) are 

adopted from edge localized mode-averaged analysis of a DIII-D ITER Demonstration 

discharge. A fully noninductive SS scenario is achieved with fusion gain 

€ 

Q = 4.3, 

noninductive fraction 

€ 

fNI =  100%, bootstrap current fraction 

€ 

fBS = 63%, and 

normalized beta 

€ 

βN = 2.7  at plasma current 

€ 

Ip = 8 MA and toroidal field 

€ 

BT =  5.3 T 

using ITER day-1 heating and CD capability. Substantial uncertainties come from the 

outside the radius of setting the boundary conditions (

€ 

ρ = 0.8 −1.0). The present 

simulation assumed 

€ 

βN ρ( )  at the top of pedestal is about 25% above the peeling-

ballooning threshold. Overall, the experimentally scaled edge is an optimistic side of the 

prediction.  ITER will have a challenge to achieve the boundary, considering different 

operating conditions (

€ 

Te /Ti ≈1 and density peaking). A number of SS scenarios with 

different heating and current drive mixes in a wide range of conditions were explored by 

exploiting the steady-state solution procedure for the GLF23 transport model. The results 

are also presented in the operation space for DT neutron power versus stationary burn 

pulse duration with assumed poloidal flux availability at the beginning of stationary burn, 

indicating that the long pulse operation goal (3000 s) at 

€ 

Ip = 9 MA is possible. Source 

calculations in these simulations have been revised for electron cyclotron current drive 

including parallel momentum conservation effects and for neutral beam current drive 

with finite orbit and magnetic pitch effects. 
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