Response of a Resistive and Rotating Tokamak to External Magnetic Perturbations Below the Alfvén Frequency

M.S. Chu,1 L.L. Lao,1 M.J. Schaffer,1 T.E. Evans,1 E.J. Strait,1 Y.Q. Liu,2 M.J. Lanctot,3 H. Reimerdes,4 Y. Liu,5 T.A. Casper,6 and Yuri Gribov6

1General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
2Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, UK
3Columbia University, New York, New York, 10027 USA, Present affiliation: Lawrence Livermore National Laboratory, Livermore, California
4Columbia University, New York, New York, 10027 USA, Present affiliation: CRPP-EPFL, CH-1015 Lausanne, Switzerland
5Dalian University of Technology, Dalian, China
6ITER Organization, Cadarache 13108 Saint Paul lez Durance, France

Abstract

Motivated by the recent experimental observation that plasma stability can be improved by external magnetic perturbations, the general problem of plasma response to external magnetic perturbations is investigated. Different (vacuum, ideal, and resistive) plasma response models are considered and compared. Plasma response, in experiments where stabilization was achieved, is obtained through computation using the MARS-F code, with a plasma model that includes both plasma resistivity and rotation. The resultant magnetic field line stochasticity is much reduced from that obtained formerly using the vacuum plasma model. This reduced stochasticity is more consistent with the favorable experimental observation of enhanced stability. Examples are given for response of an ITER plasma to perturbations generated by the correction coils; and response of a plasma to external coils (antenna) up to the Alfvén frequency.