Optimization of the safety factor profile for high noninductive current fraction discharges in DIII-D*

J.R. Ferron¹, C.T. Holcomb², T.C. Luce¹, P.A. Politzer¹, F. Turco³, A.E. White⁴, J.C. DeBoo¹, E.J. Doyle⁵, A.W. Hyatt¹, R.J. La Haye¹, M. Murakami⁶, T.W. Petrie¹, C.C. Petty¹, T.L. Rhodes⁵, and L. Zeng⁵

¹General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA ²Lawrence Livermore National Laboratory, 700 East Ave, Livermore, California 94550, USA ³Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37830-8050, USA ⁴Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, USA

⁵University of California-Los Angeles, PO Box 957099, Los Angeles, California 90095-7099, USA

⁶Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, USA e-mail contact of main author: <u>ferron@fusion.gat.com</u>

Abstract. In order to assess the optimum q profile for discharges in DIII-D with 100% of the current driven noninductively ($f_{\rm NI} = 1$), the self-consistent response of the plasma profiles to changes in the q profile was studied in high $f_{\rm NI}$, high $\beta_{\rm N}$ discharges through a scan of $q_{\rm min}$ and q_{95} at two values of $\beta_{\rm N}$. As expected, both the bootstrap current fraction, $f_{\rm BS}$, and $f_{\rm NI}$ increased with q_{95} . The temperature and density profiles were found to broaden as either q_{\min} or β_N is increased. A consequence is that f_{BS} does not continue to increase at the highest values of q_{min} . A scaling function that depends on q_{\min} , q_{95} , and the peaking factor for the thermal pressure was found to represent well the $f_{\rm BS}/\beta_{\rm N}$ inferred from the experimental profiles. The changes in the shapes of the density and temperature profiles as β_N is increased modify the bootstrap current density (J_{BS}) profile from peaked close to the axis to relatively flat in the region between the axis and the H-mode pedestal. Therefore, significant externaly-driven current density in the region inside the H-mode pedestal is required in addition to J_{BS} in order to match the profiles of the noninductive current density (J_{NI}) to the desired total current density (J). In this experiment, the additional current density was provided mostly by neutral beam current drive with the neutral-beam-driven current fraction 40%-90% of $f_{\rm BS}$. The profiles of $J_{\rm NI}$ and J were most similar at $q_{\rm min} \approx 1.35$ -1.65, $q_{95} \approx 6.8$, where f_{BS} is also maximum, establishing this q profile as the optimal choice for $f_{NI} = 1$ operation in DIII-D with the existing set of external current drive sources.

*This work was supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-06OR23100, and DE-FG02-08ER54984.