Imaging Key Aspects of Fast Ion Physics in the DIII-D Tokamak

M.A. Van Zeeland¹, J.H. Yu², W.W. Heidbrink³, N.H. Brooks¹, K.H. Burrell¹, M.S. Chu¹, A.W. Hyatt¹, R. Nazikian⁴, N.A. Pablant², D.C. Pace³, W.M. Solomon⁴, and M.R. Wade¹

¹General Atomics, PO Box 85608 San Diego, California 92186-5608, USA ²University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA

³University of California-Irvine, Irvine, California 92697, USA

 $^4\mathrm{Princeton}$ Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08540, USA

E-mail: vanzeeland@fusion.gat.com

Abstract.

Visible imaging has been used to provide the 2D spatial structure and temporal evolution of the profile of high-energy neutrals introduced by neutral beam injection, the fast ion profile, and a variety of plasma instabilities in DIII-D plasmas; the combination of these techniques form a comprehensive fast ion physics diagnostic suite. The injected neutral profile is imaged in Doppler shifted D_{α} light induced by collisional excitation. Fast ion profile information was obtained through imaging of Doppler shifted fast ion D_{α} light (FIDA) emitted by re-neutralized energetic ions. Time evolved measurements of the detailed 2D poloidal structure of rotating tearing modes were obtained using spectrally filtered fast imaging of broadband visible bremsstrahlung emission, a method which is capable of imaging with high resolution the structure of coherent oscillations in the core of current and next-step fusion plasma experiments and can be applied to virtually any mode with a finite perturbed bremsstrahlung emissivity and frequency in the laboratory frame. Measurements are also presented of the n = 0energetic particle geodesic acoustic mode (EGAM) which were made for the first time using a camera based beam emission fluctuation diagnostic.