Observation of reduced core electron temperature fluctuations and intermediate wavenumber density fluctuations in H-mode plasmas

L. Schmitz¹, A.E. White², G. Wang¹, J.C. DeBoo³, J.S. deGrassie³, G.R. McKee⁴, J.C. Hillesheim¹, W.A. Peebles¹, T.L. Rhodes¹, T.A. Carter¹, E.D. Doyle¹, L. Zeng¹, K.H. Burrell³, C.C. Petty³, J. Kinsey³, W.A. Solomon⁵, G.M. Staebler³, and the DIII-D Team

¹University of California-Los Angeles, Los Angeles, California 90095-1547, USA ²Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA ³General Atomics, San Diego, California 92186-5608, USA ⁴University of Wisconsin at Madison, Madison, Wisconsin 53706, USA ⁵Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA

e-mail: lschmitz@ucla.edu

Abstract. In this paper, we report observations of reduced ITG-scale core electron temperature and intermediate-scale density fluctuations in H-mode. Electron temperature fluctuation levels are observed to decrease from L-mode levels $[0.5\% \le \tilde{T}_e/T_e \le 2\%$ for $k_{\theta}\rho_s < 0.5$ as measured by correlation ECE (CECE) radiometry] by at least a factor of four in H- and QH-mode regimes in the DIII-D tokamak (r/a = 0.7). Linear stability calculations (using the TGLF trapped gyro-Landau code) indicate that the observed temperature fluctuations are associated with L-mode ITG turbulence which is shear-stabilized at the L- to H-mode transition. Recent results from DIII-D provide the first experimental evidence that, in addition, intermediate-scale turbulence $(0.5 < k_{\theta}\rho_s \le 2)$ is reduced at the L-H transition. A 30%–40% prompt reduction ($r/a \ge 0.7$) has been found at the L-H transition in co-injected plasmas, with a larger decrease ($\ge 75\%$) observed near the pedestal top. Experimental results and TGLF calculations indicate that intermediate/small scale turbulence persists in H-mode at a reduced amplitude ($0.6 \le r/a \le 1$) and may substantially contribute to the residual anomalous H-mode electron heat transport.