ELM suppression in hybrid discharges using n = 3 magnetic perturbations on DIII-D

C. C. Petty, T. E. Evans, J. C. DeBoo, R. J. La Haye, P. A. Politzer,
S. L. Allen,^{(a} E. J. Doyle,^{(b} M. E. Fenstermacher,^{(a} J. R. Ferron,
A. W. Hyatt, R. J. Jayakumar,^{(a} R. A. Moyer,^{(c} and T. H. Osborne

General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA

^{(a}Lawrence Livermore National Laboratory, Livermore, California ^{(b}University of California–Los Angeles, Los Angeles, California

^{(c}University of California–San Diego, San Diego, California

Abstract. Large type-I edge localized modes (ELMs) are completely suppressed in hybrid discharges for the first time by applying an edge resonant perturbation (RMP) using an internal coil set with toroidal mode number n = 3. In these experiments on the DIII-D tokamak, the ELM suppression lasts for ~1 s in plasmas with normalized beta up to $\beta_N = 2.5$ (volume average beta up to $\beta = 3.4\%$) and a fusion performance factor as high as $\beta_N H_{98y2}/q_{95}^2 = 0.2$, which is sufficient for Q = 10 in ITER. This is an important advance in developing hybrid discharges as a baseline operating scenario for ITER.