ELM suppression in hybrid discharges using $n = 3$ magnetic perturbations on DIII-D

General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA

$^{(a)}$Lawrence Livermore National Laboratory, Livermore, California

$^{(b)}$University of California–Los Angeles, Los Angeles, California

$^{(c)}$University of California–San Diego, San Diego, California

Abstract. Large type-I edge localized modes (ELMs) are completely suppressed in hybrid discharges for the first time by applying an edge resonant perturbation (RMP) using an internal coil set with toroidal mode number $n = 3$. In these experiments on the DIII-D tokamak, the ELM suppression lasts for ~ 1 s in plasmas with normalized beta up to $\beta_N = 2.5$ (volume average beta up to $\beta = 3.4\%$) and a fusion performance factor as high as $\beta_N H_{98y}/q_{95} = 0.2$, which is sufficient for $Q = 10$ in ITER. This is an important advance in developing hybrid discharges as a baseline operating scenario for ITER.