Tearing mode structure in the DIII-D tokamak through spectrally-filtered fast visible Bremsstrahlung imaging

M A Van Zeeland¹, J H Yu², M S Chu¹, K H Burrell¹, R J La Haye¹, T C Luce¹, R Nazikian³, W M Solomon³, and W P West¹

¹General Atomics, PO Box 85608 San Diego, California 92186-5608, USA
²University of California-San Diego, La Jolla, California, USA
³Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA

E-mail: vanzeeland@fusion.gat.com

Abstract.

Time evolved measurements of the detailed 2D poloidal structure of rotating tearing modes in the DIII-D tokamak are obtained for the first time using spectrally filtered fast imaging (SFFI) of broadband visible Bremsstrahlung emission (N_B). Measurements are made along 256 × 256 different sightlines and show excellent agreement with simulations assuming a rotating helical m/n = 2/1 island structure superimposed on the equilibrium N_B profile. The method described here is capable of imaging with high resolution the structure of coherent oscillations in the core of current and next-step fusion plasma experiments such as ITER and can be applied to virtually any mode with a finite perturbed N_B and frequency in the laboratory frame provided sufficient signal level and detector bandwidth are available.