100% noninductive operation at high beta using Off-axis ECCD in DIII-D

General Atomics, P.O. Box 85608, San Diego, California, USA
aOak Ridge National Laboratory, Oak Ridge, Tennessee, USA
bLawrence Livermore National Laboratory, Livermore, California, USA
cUniversity of Texas at Austin, Austin, Texas, USA
dMassachusetts Institute of Technology, Cambridge, Massachusetts, USA
eUniversity of California at Los Angeles, Los Angeles, California, USA
fColumbia University, New York, New York, USA
gMax-Planck-Institut fur Plasmaphysiks, Garching, Germany
hOak Ridge Institute for Science Education, Oak Ridge, Tennessee, USA
iPrinceton Plasma Physics Laboratory, Princeton, New Jersey, USA
jLehigh University, Bethlehem, Pennsylvania, USA

e-mail contact of main author: murakami@fusion.gat.com

Abstract. The Advanced Tokamak (AT) program on DIII-D is to develop the scientific basis for steady state, high-performance operation in future devices. We report on experiments attempting to demonstrate sustainment of 100% noninductive current for several seconds at high beta, using up to 2.5 MW of off-axis electron cyclotron current drive (ECCD) and up to 15 MW of neutral beam injection (NBI) with \(q_{95} \approx 5\). A 100% noninductive condition was achieved both globally and locally across the plasma with \(\beta_T = 3.6\%, \beta_N = 3.5\%, \text{ and } H_{89} = 2.4\). However, the duration of this phase was limited by the pressure profile evolution, leading to MHD instabilities after about 0.7 s. In a separate discharge, a nearly (~90%) noninductive, stationary condition was maintained for one current relaxation time (1.8 s), only limited by the duration of the hardware system. These experiments have achieved normalized fusion performance \(\beta_N H_{89}/q_{95}^2 \approx 0.3\) with bootstrap current fraction \(f_{BS} \approx 60\%,\) consistent with requirements for the ITER \(Q=5\) steady-state scenarios. The modeling tools that were successfully employed to devise experiments in DIII-D are applied to ITER, indicating full noninductive operation is plausible for an ITER steady state scenario with \(Q = 5\).