100% noninductive operation at high beta using Off-axis ECCD in DIII-D

M. Murakami,^a C.M. Greenfield, M.R. Wade,^a T.C. Luce, J.R. Ferron, H.E. St John, M.A. Makowski,^b M.E. Austin,^c S.L. Allen,^b D.P. Brennan,^d K.H. Burrell, T.A. Casper,^a J.C. DeBoo, E.J. Doyle,^e A.M. Garofalo,^f P. Gohil, I.A. Gorelov, R.J. Groebner, J. Hobirk,^g A.W. Hyatt, R.J. Jayakumar,^b K. Kajiwara,^h C.E. Kessel,ⁱ J.E. Kinsey,^j R.J. La Haye, J.Y. Kim, L.L. Lao, J. Lohr, J.E. Menard,ⁱ C.C. Petty, T.W. Petrie, R.I. Pinsker, P.A. Politzer, R. Prater, T.L. Rhodes,^e A.C.C. Sips,^g G.M. Staebler, T.S. Taylor, G. Wang,^e W.P. West, L. Zeng,^e and the DIII–D Team

General Atomics, P.O. Box 85608, San Diego, California, USA ^aOak Ridge National Laboratory, Oak Ridge, Tennessee, USA ^bLawrence Livermore National Laboratory, Livermore, California, USA ^cUniversity of Texas at Austin, Austin, Texas, USA ^dMassachusetts Institute of Technology, Cambridge, Massachusetts, USA ^eUniversity of California at Los Angeles, Los Angeles, California, USA ^fColumbia University, New York, New York, USA ^gMax-Planck-Institut fur Plasmaphysiks, Garching, Germany ^hOak Ridge Institute for Science Education, Oak Ridge, Tennessee, USA ⁱPrinceton Plasma Physics Laboratory, Princeton, New Jersey, USA ^jLehigh University, Bethlehem, Pennsylvania, USA

e-mail contact of main author: murakami@fusion.gat.com

Abstract. The Advanced Tokamak (AT) program on DIII-D is to develop the scientific basis for steady state, high-performance operation in future devices. We report on experiments attempting to demonstrate sustainment of 100% noninductive current for several seconds at high beta, using up to 2.5 MW of off-axis electron cyclotron current drive (ECCD) and up to 15 MW of neutral beam injection (NBI) with $q_{95} \approx 5$. A 100% noninductive condition was achieved both globally and locally across the plasma with $\beta_{\rm T} = 3.6\%$, $\beta_{\rm N} = 3.5$, and $H_{89} = 2.4$. However, the duration of this phase was limited by the pressure profile evolution, leading to MHD instabilities after about 0.7 s. In a separate discharge, a nearly (~90%) noninductive, stationary condition was maintained for one current relaxation time (1.8 s), only limited by the duration of the hardware system. These experiments have achieved normalized fusion performance $\beta_{\rm N} H_{89}/q_{95}^2 \approx 0.3$ with bootstrap current fraction $f_{\rm BS} \approx 60\%$, consistent with requirements for the ITER Q=5 steady-state scenarios. The modeling tools that were successfully employed to devise experiments in DIII-D are applied to ITER, indicating full noninductive operation is plausible for an ITER steady state scenario with $Q \approx 5$.