Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas

T.E. Evans , R.A. Moyer^{a)}, J.G. Watkins^{b)}, T.H. Osborne, P.R. Thomas^{c)}, M. Becoulet^{c)}, J.A. Boedo^{b)}, E.J. Doyle^{d)}, M.E. Fenstermacher^{e)}, K.H. Finken^{f)}, R.J. Groebner, M. Groth^{e)}, J.H. Harris^{g)}, G.L. Jackson, R.J. La Haye, C.J. Lasnier^{e)}, S. Masuzaki^{h)}, N. Ohyabu^{h)}, D.G. Pretty^{g)}, H. Reimerdesⁱ⁾, T.L. Rhodes^{d)}, D.L. Rudakov^{a)}, M.J. Schaffer, M.R. Wade^{j)}, G. Wang^{d)}, W.P. West, and L. Zeng^{d)}

General Atomics, P.O. Box 85608, San Diego, California, 92186-5608 U.S.A.

^{a)}University of California San Diego, La Jolla, California, U.S.A.

^{b)}Sandia National Laboratory, Albuquerque, New Mexico, U.S.A.

^{c)}CEA-Cadarache Euratom Association, Cadarache, France

^{d)}University of California, Los Angeles, California, U.S.A.

^{e)}Lawrence Livermore National Laboratory, Livermore, California, U.S.A.

^{f)}FZ-Jülich Euratom Association, Jülich, Germany

^{g)}Australian National University, Canberra, Australia

^{h)}National Institute for Fusion Science, Gifu-ken, Japan

ⁱ⁾Columbia University, New York, New York, U.S.A.

^{j)}Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.

email: evans@fusion.gat.com

Abstract. Large sub-millisecond heat pulses due to Type-I edge localized modes (ELMs) have been eliminated reproducibly in DIII-D for periods approaching nine energy confinement times (τ_E) with small dc currents driven in a simple magnetic perturbation coil. The current required to eliminate all but a few isolated Type-I ELM impulses during a coil pulse is less than 0.4% of plasma current. Based on vacuum magnetic field line modeling, the perturbation fields resonate with plasma flux surfaces across most of the pedestal region ($0.9 \le \psi_N \le 1.0$) when $q_{95} = 3.7\pm0.2$ creating small remnant magnetic islands surrounded by weakly stochastic field lines. The stored energy, β_N , H–mode quality factor and global energy confinement time are unaltered by the magnetic perturbation. Although some isolated ELMs occur during the coil pulse, long periods free of large Type-I ELMs ($\Delta t > 4-6 \tau_E$) have been reproduced numerous times, on multiple experimental run days in high and intermediate triangularity plasmas including cases matching the baseline ITER Scenario 2 flux surface shape. In low triangularity, lower

single null, plasmas with collisionalities near that expected in ITER, Type-I ELMs are replaced by small amplitude, high frequency Type-II-like ELMs and are often accompanied by one or more ELM-free periods approaching 1-2 τ_E . Large Type-I ELM impulses represent a severe constraint on the survivability of the divertor target plates in future burning plasma devices. Results presented in this paper demonstrate that non-axisymmetric edge magnetic perturbations provide a very attractive development path for active ELM control in future tokamaks such as ITER.