Search for a critical electron temperature gradient in DIII–D L-mode discharges

J.C. DeBoo, S. Ciranta\textsuperscript{a)}, T.C. Luce, A. Manini\textsuperscript{b)}, C.C. Petty, F. Ryter\textsuperscript{b)}, M.E. Austin\textsuperscript{c)}, D.R. Baker, K.W. Gentle\textsuperscript{c)}, C.M. Greenfield, J.E. Kinsey\textsuperscript{d)}, and G.M. Staebler

General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
\textsuperscript{a)}Instituto di Fisica del Plasma, CNR, Milano, Italy
\textsuperscript{b)}IPP-Garching, Garching, Germany
\textsuperscript{c)}University of Texas at Austin, Austin, Texas, USA
\textsuperscript{d)}Lehigh University, Lehigh, Pennsylvania, USA

e-mail contact of main author: deboo@fusion.gat.com

Received (Abstract. Two experiments on DIII-D have been performed with the purpose of searching for evidence of a critical electron temperature gradient or gradient scale length. Both experiments employed off-axis electron current (EC) heating to vary the local value of $\Delta T_e/T_e$ while holding the total heating power and thus edge temperatures constant. No evidence of an inverse critical gradient scale length, $k_{\text{crit}}$, was observed in these experiments, but the existence of one cannot be ruled out by the experimental results. If $k_{\text{crit}}$ exists, the experimental results indicate $k_{\text{crit}} < 3.8$ m$^{-1}$ at $\rho = 0.45$ and $k_{\text{crit}} < 2.5$ m$^{-1}$ at $\rho = 0.29$ corresponding to a critical gradient scale length larger than 43% and 65% of the plasma minor radius, respectively. Models other than one based on $k_{\text{crit}}$ are also consistent with the experimental observations.