Search for a critical electron temperature gradient in DIII–D L-mode discharges

J.C. DeBoo, S. Cirant^{a)}, T.C. Luce, A. Manini^{b)}, C.C. Petty, F. Ryter^{b)}, M.E. Austin^{c)},

D.R. Baker, K.W. Gentle^{c)}, C.M. Greenfield, J.E. Kinsey^{d)}, and G.M. Staebler

General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA

^{a)}Instituto di Fisica del Plasma, CNR, Milano, Italy

^{b)}IPP-Garching, Garching, Germany

^{c)}University of Texas at Austin, Austin, Texas, USA

^{d)}Lehigh University, Lehigh, Pennsylvania, USA

e-mail contact of main author: deboo@fusion.gat.com

Received (

Abstract. Two experiments on DIII-D have been performed with the purpose of searching for evidence of a critical electron temperature gradient or gradient scale length. Both experiments employed off-axis electron current (EC) heating to vary the local value of $\Delta T_e/T_e$ while holding the total heating power and thus edge temperatures constant. No evidence of an inverse critical gradient scale length, $k_{\rm crit}$, was observed in these experiments, but the existence of one cannot be ruled out by the experimental results. If $k_{\rm crit}$ exists, the experimental results indicate $k_{\rm crit} < 3.8 \text{ m}^{-1}$ at $\rho = 0.45$ and $k_{\rm crit} < 2.5 \text{ m}^{-1}$ at $\rho = 0.29$ corresponding to a critical gradient scale length scale length larger than 43% and 65% of the plasma minor radius, respectively. Models other than one based on $k_{\rm crit}$ are also consistent with the experimental observations.