
1

Resistive Wall Stabilization of High Beta Plasmas in DIII–D

E.J. Strait,1 J. Bialek,2 N. Bogatu,3 M. Chance,4 M.S. Chu,1 D. Edgell,3 A.M. Garofalo,2

G.L. Jackson,1 T.H. Jensen,1 L.C. Johnson,4 J.S. Kim,3 R.J. La Haye,1 G. Navratil,2

M. Okabayashi4 H. Reimerdes,2 J.T. Scoville,1 A.D. Turnbull,1 M.L. Walker,1 and the

DIII–D Team

1General Atomics, P.O. Box 85608, San Diego, California 92186-5608 USA

email: strait@fusion.gat.com

2Columbia University, New York

3Fartech, Inc., 10350 Science Center Drive, Bldg. 14, Suite 150, San Diego, California 92121

4Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 USA

Abstract.  Recent DIII–D experiments show that ideal kink modes can be stabilized at high beta by a

resistive wall, with sufficient plasma rotation. However, the resonant response to static magnetic field

asymmetries by a marginally stable resistive wall mode can lead to strong damping of the rotation.

Careful reduction of such asymmetries has allowed plasmas with beta well above the ideal MHD no-

wall limit, and approaching the ideal-wall limit, to be sustained for durations exceeding one second.

Feedback control can improve plasma stability by direct stabilization of the resistive wall mode or by

reducing magnetic field asymmetry. Assisted by plasma rotation, direct feedback control of resistive

wall modes with growth rates more than 5 times faster than the characteristic wall time has been

observed. These results open a new regime of tokamak operation above the free-boundary stability

limit, accessible by a combination of plasma rotation and feedback control.
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1.  INTRODUCTION

Many “advanced tokamak” scenarios for steady-state operation at high beta rely on wall

stabilization of the ideal kink mode. Advanced tokamak scenarios have the goal of high average

fusion power, which requires both high power density and steady-state operation. High fusion

power density at fixed toroidal field implies high toroidal beta, while steady-state operation with

a large fraction of self-generated bootstrap current implies high poloidal beta. Since βTβP ∝ βN
2

these lead to a requirement of high normalized beta, which may require a conducting wall for

stability. In fact, the broad current density profile associated with a large bootstrap current

typically leads to a relatively low free-boundary kink-mode limit in βN, but also allows the

possibility of stabilization by an ideally conducting wall. In the presence of a resistive wall, such

as the DIII–D vacuum vessel, the kink mode is not completely stabilized but is converted to a

slowly-growing resistive wall mode (RWM). Theory and numerical modeling predict that the

RWM can be stabilized by feedback control [1] or plasma rotation [2]. RWM stabilization by

strong plasma rotation may not be robust or even feasible in a burning plasma which is likely to

have little or no torque from neutral beam heating, so it is important to develop both approaches.

Recent experiments in the DIII–D tokamak [3] with strong rotation have demonstrated

sustained stable operation well above the free-boundary stability limit [4], as shown in Fig. 1.

Earlier DIII–D experiments [5] exceeded the free-boundary limit for durations much longer than

the characteristic wall time of ~5 ms, but these discharges typically showed strong damping of

the rotation in the wall-stabilized regime [6], preventing sustained stabilization of the RWM by

rotation. This slowing of rotation is now understood as resulting from resonant “amplification”

of small magnetic field asymmetries by a marginally stable RWM [7]. Correction of the intrinsic

asymmetries by means of non-axisymmetric coils has allowed rotational stabilization to be

sustained for long durations. The critical rotation frequency is consistent with theoretical

predictions [2].
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Direct feedback control of the RWM has also been developed in DIII–D experiments [4,8]

and can extend the stable operating regime. The effectiveness of feedback control depends on the

choice of detection method and control algorithm. Poloidal field sensors inside the resistive wall

are found to be most effective [9,10], consistent with theoretical predictions [11–13]. Modeling

shows that the combined effects of rotation and feedback control can provide robust stabilization

as beta increases, almost to the ideal-wall stability limit [14]. In addition to direct feedback

control of the instability, the feedback system can also contribute to rotational stabilization by

improving the symmetrization of the magnetic field.

Error field correction and RWM feedback control in DIII–D are performed with the “C-coil”,

a six-segment set of external coils around the midplane of the tokamak [Fig. 2(a)]. These coils

were originally installed for error field correction. With the addition of fast switching amplifiers,

the coils are now used for simultaneous error correction and feedback stabilization. Several

arrays of resistive wall mode diagnostics are available at the midplane [Fig. 2(b)] and have been

used as input for the feedback system. Additional arrays above and below the midplane are used

to measure the poloidal mode structure of the RWM. The arrays of radial field sensors (saddle

loops) outside the vacuum vessel have been in use since 1998. Based on theoretical predictions

of improved performance, new arrays of radial field sensors and poloidal field sensors (magnetic

probes) were installed on the inner surface of the vessel for use in 2001.

Section 2 summarizes experimental results on the rotational stabilization of the RWM,

including the effects of resonant field amplification. Section 3 compares modeling predictions for

feedback control using various types of sensors, focusing on a very simple analytic model that

provides qualitative understanding of the differences in behavior. Section 4 describes the results

of feedback experiments, with comparison to modeling predictions. Section 5 gives a brief

discussion of the performance of different types of sensors when used for feedback-controlled

error field correction in a rotation-stabilized plasma. Conclusions are given in Section 6.

2.  STABILIZATION BY PLASMA ROTATION
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DIII–D experiments have shown that stable operation significantly above the free-boundary

ideal kink mode beta limit is possible with a resistive wall and sufficient plasma rotation. In the

experiments described here, the discharge is programmed with a plasma current ramp as fast as

1.6 MA/s during the high power heating phase. The rapid current ramp maintains a broad current

density profile with low internal inductance, which has a low kink mode beta limit without a

conducting wall but a significantly higher beta limit with a perfectly conducting wall. In these

current-ramp plasmas, both experimental evidence and stability calculations with the GATO

code show that the ideal MHD stability limit without a wall is well approximated by the scaling

βN ≤ 2.4 li. (This contrasts with the more usual constant-current discharges where the ideal no-

wall limit is typically βN ≤ 4 li). Here, βN=β/(I/aB) is the normalized beta, li is the internal

inductance, β=2µ0<p>/B2 is the normalized plasma pressure, I is the plasma current in MA, a is

the minor radius in meters, and B is the toroidal field in Tesla. When beta is above the ideal

MHD no-wall limit, these discharges are subject to strong resistive wall mode instabilities that

cause an early beta collapse unless there is sufficient rotation.

Experimental measurements clearly show the existence of a critical toroidal rotation

frequency, above which the plasma remains stable. Figure 3(a) shows a set of similar discharges

in which the rotation was allowed to decay at different rates. With sufficient rotation, the

normalized beta remains above the estimated no-wall limit, and the margin above the limit

increases slowly with time. However, each discharge suffers a beta collapse when the rotation

frequency decays to a critical value, in this case about 6 kHz as measured at the q=2 surface.

The critical rotation frequency is consistent with theoretical expectations. Models for the

rotational stabilization of an ideal kink mode require dissipation in the plasma, allowing the

resistive wall mode to exert a torque on the plasma. In a series of DIII–D discharges where the

toroidal field and density were varied, the critical rotation frequency for RWM stabilization was

found to scale as about 2% of the Alfvén frequency [Fig. 3(b)]. (However, in this data set with

roughly constant beta, an inverse scaling with the sound speed would also be consistent.) The

magnitude of the critical rotation frequency is consistent with models where the dissipation takes
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place by sound wave coupling [2]. The variation about the fitted curve in Fig. 3(b) may indicate

an additional dependence on beta.

Enhancement of small asymmetries of the external magnetic field can lead to strong damping

of the rotation in stable plasmas, precisely in the regime where sustained rotation is needed for

high beta stabilization. The theoretically predicted “amplification” of magnetic field asymmetries

by the resonant response of a marginally stable RWM [7] has been directly observed in DIII–D

experiments [15]. Figure 4(a) shows an experiment in which the C-coil was used to apply a

pulsed n=1 radial magnetic field perturbation. In a plasma that was slightly above the estimated

no-wall limit and stabilized by plasma rotation, there was a strong plasma response to the

perturbation and a sudden slowing of the plasma rotation. In a similar plasma at lower beta, there

was virtually no response to the perturbation. The response reflects the excitation of a helical

plasma mode [4], although the applied n=1 field has equal right- and left-handed helical

components. The response is due to excitation of a stable mode, since the plasma response

returns to zero when the external perturbation is removed. As beta is raised above the free-

boundary stability limit, the amplitude of the plasma response to the n=1 pulse increases rapidly

and the measured damping rate (negative growth rate) decreases toward zero [Fig. 4(b)]. That is,

plasma rotation provides only weak damping of the RWM, consistent with the strong resonant

response to magnetic perturbations observed in the rotation-stabilized regime.

The resonant plasma response has been exploited in a new approach to feedback-controlled

error field correction. This is one of several independent techniques using the C-coil system that

have been shown to symmetrize the external magnetic field, and thereby to sustain the plasma

rotation. The feedback system controls the coil currents to minimize the RWM amplitude. Thus,

in the case of a stable plasma, it acts to minimize the resonant n=1 plasma response, and

presumably to minimize the field asymmetries that drive that response. As shown in Fig. 5, when

the same coil currents are provided by pre-programming instead of feedback control, the results

are similar with respect to plasma stability. Therefore, in this case, the feedback system is

primarily responding to static field asymmetries and not to an unstable plasma mode. Discharge-
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to-discharge optimization of the coil currents to maximize plasma rotation converges on the same

currents that are found with magnetic field symmetrization by the feedback system [16].

Use of these techniques to symmetrize the external magnetic field has significantly improved

the stability of DIII–D plasmas (see Fig. 5, for example). Operation above the free-boundary

stability limit has been sustained for as long as 1.5 s, as also shown earlier in Fig. 1. A small

additional increase in beta brings the discharge up to about twice the free-boundary limit, and

results in a disruption (Fig. 6) that is consistent with having reached the ideal-wall stability

limit [17]. This disruption has a fast-growing precursor with a growth time of about 300 µs, as

shown in Fig. 7(a). This growth time is consistent with VALEN predictions for an RWM very

near the ideal-wall stability limit [13]. The relatively rapid rotation frequency of the precursor

(Fig. 7(b), ωτwall~30) also implies that the wall is acting nearly as an ideal conductor. Detailed

calculations with GATO show that beta at the time of the instability differs by less than 10%

from the calculated ideal-wall stability limit [Fig. 7(c)].

In discharges without the strong current ramp and the lower beta limit that it leads to, rotation

has allowed stable operation at normalized beta up to βN=4.2, 50% greater than the free-

boundary limit of about 2.8 for these plasmas (Fig. 8). The example shown in Fig. 8 had βT

greater than 4% and about 85% non-inductive current, and is a good candidate for development

of a high-performance steady-state fusion plasma [18].

3.  STABILIZATION BY FEEDBACK CONTROL: MODELING

Feedback control can improve the stability of high-beta plasmas in several ways. First, the

RWM can be stabilized by direct feedback control of the mode amplitude. Second, modeling

suggests that the combined effects of rotation and feedback control may provide greater stability

than either one alone, given the same values of rotation frequency and feedback gain [14]. Third,

as described above, the feedback system can contribute to rotational stabilization by improving

the symmetrization of the magnetic field.
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The advantages of internal over external radial field sensors originate primarily in their

distance from the plasma, since the normal (raidal) field component is continuous across a

conducting boundary. Modeling with the MARS code has shown that the feedback performance

with radial field sensors is very sensitive to the position of the sensors [2]. In modeling of an

advanced tokamak equilibrium with beta about 1.6 times the no-wall stability limit, the critical

gain for stabilization varied by more than a factor of 2 as the radial position of the sensors was

increased by about 15% of the plasma's minor radius. This is a result of the increased coupling to

the control coils and reduced coupling to the plasma as the sensor radius increases, and provides

motivation for placing the sensors inside the wall to reduce the distance from the plasma.

MARS modeling has also predicted superior feedback performance with poloidal field

sensors as compared with radial field sensors[11,12]. In modeling of the same equilibrium,

feedback control with poloidal field sensors was found to be more robust than with radial field

sensors. Specifically, with poloidal field sensors, the control was much less sensitive to the

poloidal width of the control coils and to the radial position of the sensors between the wall and

the plasma. The poloidal field sensors were also found to require a dimensionless gain value for

the feedback control about half that for radial field sensors in the optimal configuration for each.

These results have been further analyzed in terms of control theory [21–23], and are attributed to

the vanishing of the mutual inductance between the control coils and poloidal field sensors.

Similar results were obtained from VALEN modeling. The VALEN code [13] uses a

detailed, finite-element circuit representation for the plasma mode, resistive wall, and control

coils, and can model arbitrary sensor and coil configurations. In the specific geometry of the

DIII–D vacuum vessel, midplane control coils, and sensors, poloidal field sensors were again

found to have superior performance. As shown in Fig. 9, using the existing external control coils,

external radial field sensors were predicted to extend the beta limit by about 20% of the

difference between the no-wall limit and the ideal-wall limit. Internal radial field sensors were

predicted to give a modest improvement, to about 30% of the difference between the no-wall

limit and the ideal-wall limit, while a 50% extension was predicted with poloidal field sensors.
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Although less realistic than the numerical models, analytic models with lumped

parameters [8,14,19,24] can provide valuable insight into the differences between types of

sensors. Such models can be reduced to a simple set of equations:

s - γ0 + G(s) F(s) = 0   , (1)

Φ = ΦP + ΦPW + ΦC + ΦCW    , (2)

ΦP = (1+γ0) Φ   , (3)

ΦC = −G(s) ΦS   , (4)

ΦPW, CW = −ΦP,C s/(1+s)   , (5)

where in Laplace transform notation s = γ + iω  represents the growth rate and real frequency of

the resistive wall mode, and γ0 is the growth rate in the absence of feedback. The limit where the

plasma would be marginally stable with an ideal wall corresponds to γ0 = ∞, since this model

neglects the plasma’s inertia. The dispersion relation [Eq. (1)] is to be solved for the growth rate

of the instability. The total perturbed radial flux Φ at the resistive wall includes terms for the flux

ΦP produced by the plasma, the flux ΦC produced by the control coils, and fluxes ΦPW and ΦCW

from wall currents induced by the plasma and control coils respectively [Eq. (2)]. The plasma

model [Eq. (3)] relates the plasma perturbation to the perturbed boundary condition at the

wall [19]. The transfer function F(s) for the sensors relates the flux ΦS measured by the sensors

to the total perturbed flux Φ, and will be defined below. The feedback gain G(s) then relates the

flux ΦC produced by the control coils to the sensor measurement ΦS [Eq. (4)]. The fluxes from

wall currents [Eq. (5)] are driven by the rate of change of the plasma and control coil fluxes, and

oppose the fluxes that drive them. Here the growth rates and frequencies are expressed in units of

the wall time constant (sτWall →  s). All of the perturbed fluxes, including the sensor

measurements, are evaluated at the wall. The key physics is contained in the model for the
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unstable plasma, the gain G (which includes the characteristics of the amplifier-control coil

system, and may be frequency dependent), and the sensor's transfer function F. For this

discussion we will assume an idealized amplifier-coil system, with a constant proportional gain

at all frequencies.

The different types of sensors can be characterized by their response to the different parts of

the perturbed flux:

Idealized Mode Detection ΦS = ΦP   , (6)

Smart Shell ΦS = ΦP + ΦPW+ ΦC + ΦCW    , (7)

DC Compensated Br Sensor ΦS = ΦP + ΦPW + ΦCW   , (8)

AC Compensated Br Sensor ΦS = ΦP + ΦPW   , (9)

Bp Sensor ΦS = ΦP − ΦPW   . (10)

An idealized sensor [Eq. (6)] would detect the plasma perturbation and nothing else. In the

"Smart Shell" control scheme [Eq. (7)] the sensor simply detects the total perturbed radial flux at

the wall, with the aim of controlling it to be zero in order to mimic the response of a perfectly

conducting wall [1,20]. Note that the response of a radial field sensor is the same whether it is

located on the inner or outer surface of the wall. The control coil currents and their coupling to

the sensors are well characterized, and their direct effects can be subtracted from the sensor

signal ([Eq. (8)]. The wall response to the control coils is also predictable and can be subtracted

from the sensor signal [Eq. (9)]. In DIII–D, because of the symmetry of the sensors and coils at

the midplane, the poloidal field sensors are naturally decoupled from the control coils and their

induced wall currents, and respond only to the plasma perturbation and the wall current that it

induces [Eq. (10)]. In Eq. (10), the poloidal field sensor has been defined in terms of the
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perturbed radial flux, with an implicit 90° phase shift from the actual measured poloidal field, so

that the form of the model in Eqs. (1–5) can be maintained. For poloidal field sensors inside the

wall, the field from the wall current reinforces the field from the plasma perturbation, a key

difference from the AC compensated radial field sensor. This change in sign of the wall response

for poloidal field sensors is expressed by changing the sign of ΦPW in Eq. (10), so that Eq. (5)

keeps the same form for all cases.

Each of the sensor definitions [Eqs. (6–10)] can be substituted into the model of Eqs. (1–5).

The dispersion relation then yields the following conditions for stability (γ < 0):

Idealized Mode Detection G > γ0/(1+γ0)   , (11)

Smart Shell Br Sensor G > γ0   , (12)

DC Compensated Br Sensor G > γ0/(1+γ0) and G < 1   , (13)

AC Compensated Br Sensor G > γ0/(1+γ0) and γ0 < 1   , (14)

Bp Sensor G > γ0/(1+γ0)   . (15)

With an idealized sensor [Eq. (11)] a feedback system with finite gain can reproduce the

stabilizing effect of an ideal wall; that is, a mode with an arbitrarily large growth rate γ0 can be

stabilized by a finite gain (G≥1). With “Smart Shell” control [Eq. (12)], a mode with any finite

growth rate can be stabilized, but the minimum required gain becomes large as the mode growth

rate increases. With DC compensated radial field sensors [Eq. (13)], a mode with an arbitrarily

large growth rate can be stabilized by a finite gain. However, the gain must also remain less than

unity, meaning that the range of stable gain values becomes very narrow as γ0 increases. With

AC compensated radial field sensors [Eq. (14)], only modes having low growth rates (γ0<1) can

be stabilized. On the other hand, the poloidal field sensor [Eq. (15)] recovers the same stability

condition as the idealized sensor. These results are summarized in Fig. 10.
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This simple model suggests that poloidal field sensors can realize the same performance as

an ideal mode amplitude sensor, allowing stabilization up to the ideal-wall limit with a modest

feedback gain G~1. The schemes considered using radial field sensors all have significant

drawbacks: a very large gain requirement, a very narrow range of stable gain values, or the

capability only to control weakly unstable modes. (Of course, these responses may be modified

and perhaps improved by the use of derivative gain and other techniques [8,15], but the simple

model serves to illustrate the qualitative differences between detection methods.)

The reasons for the difference in performance can be understood by combining the sensor

definitions [Eqs. (6–10)] with Eqs. (2), (3) and (5) to express the relationship of each type of

sensor signal to the plasma perturbation:

Idealized Mode Detection ΦS = ΦP (16)

Smart Shell ΦS = ΦP /(1+γ0) (17)

DC Compensated Br Sensor ΦS = ΦP [1−s/(1+γ0)] (18)

AC Compensated Br Sensor ΦS = ΦP/(1+s) (19)

Bp Sensor ΦS = ΦP [1+ s/(1+s)] (20)

The smart shell sensor signal [Eq. (17)] decreases as the mode growth rate γ0 increases,

requiring larger gain to be used. The DC compensated signal [Eq. (18)] has a time derivative (~s)

term with a destabilizing sign. The AC compensated signal [Eq. (19)] is a low-pass filtered

version of the idealized sensor signal, with a bandwidth of 1. Thus it should not be expected to

perform well for growth rates of γ0>1, even though it is decoupled from the control coils. The Bp

sensor [Eq. (20)] is equivalent to the idealized sensor, plus an additional high-pass filtered term

that improves the sensitivity at high frequencies. Thus, one important conclusion is that a key
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advantage of poloidal field sensors over radial field sensors is their faster time response, not

simply their decoupling from the control coils as is often stated.

The model also predicts a strong sensitivity to the location of radial field sensors, as did the

numerical models. For simplicity, we assume here a slab geometry as in Ref. [19], but the results

should apply qualitatively to other geometries. In slab geometry, the fluxes vary as exp(±kx),

where x is the “radial” coordinate and k is the “poloidal” wavenumber. Therefore, if a sensor is

displaced a small distance d from the wall, the radial flux that it measures will vary

approximately as (1±δ), where δ = kd << 1 and the sign depends on whether the sensor is moved

nearer to or farther from the source of the flux. This modification of the model can be applied to

the “smart shell” Br sensor with δ<0 (sensor displaced toward the plasma) or δ>0 (sensor

displaced toward the control coils), and to the Bp sensor with δ<0.

Smart Shell Br, δ<0: ΦS = ΦP(1+|δ|) + ΦPW(1−|δ|) + ΦC(1−|δ|) + ΦCW(1−|δ|) (21)

Smart Shell Br, δ>0: ΦS = ΦP(1−δ) + ΦPW(1−δ) + ΦC(1+δ) + ΦCW(1−δ) (22)

Bp sensor, δ<0: ΦS  = ΦP(1+|δ|) − ΦPW(1−|δ|) (23)

In this model, a Bp sensor just outside the wall (δ ≈ 0+) is equivalent to the AC compensated

Br sensor of Eq. (9), which was shown earlier to have poor performance even before displacing

the sensor toward the control coils [Eq. (14)]. Therefore, the case of the Bp sensor with δ>0 is

omitted here.

Solving the dispersion relation yields the following conditions for stability:

Smart Shell Br, δ<0: G > γ0/[1 + |δ| (1 + 2γ0)]   , (24)

Smart Shell Br, δ>0: G > γ0/[1 − δ (1 + 2γ0)] and γ0 < (1−δ)/2δ   , (25)
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Bp Sensor, δ<0: G > γ0/[(1 + γ0) (1 + |δ|)]   . (26)

It was shown earlier [Eq. (12)] that with radial sensors at the wall (δ=0), a mode with an

arbitrarily large growth rate can be stabilized, but the required gain becomes large as the mode

growth rate increases. If the Br sensor is moved from the wall toward smaller radius (δ<0), the

improved coupling to the plasma makes it possible to stabilize an arbitrarily large growth rate

with a minimum finite gain, Gmin = 1/|2δ|, as seen in Eq. (24). The existence of a finite Gmin is

qualitatively similar to the earlier results for the idealized and poloidal field sensors [Eqs. (11)

and (15)] where Gmin = 1, but in the present case Gmin may be much larger if the distance from

the wall is small. On the other hand, if the Br sensor is moved from the wall toward larger radius

(δ>0), the increased coupling to the control coil places a finite upper limit to the growth rate that

can be stabilized, even in the limit of very large gain [Eq. (25)]. A poloidal field sensor inside the

wall is far less sensitive to position: the minimum gain required to stabilize arbitrarily large

growth rates varies only as Gmin ≈ (1 − |δ|) [Eq. (26)].

In more realistic modeling there may be additional restrictions on the performance of the

feedback system, including the finite bandwidth of the amplifier-coil system. However, the

inclusion of a single-pole high frequency cutoff at a frequency ω0 does not lead to qualitative

changes in the results. The conditions (11–15) on the gain values remain the same. The idealized

sensor, smart shell, and poloidal field sensor schemes require the bandwidth to be greater than

the natural growth rate of the mode: ω 0  > γ0, while the “mode control” schemes with

compensated radial field sensors require even larger bandwidths.

4. STABILIZATION BY FEEDBACK CONTROL: EXPERIMENTAL

RESULTS

DIII–D experimental results are consistent with the modeling predictions that internal radial

field sensors perform better than external radial field sensors for resistive wall mode feedback
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control, and that poloidal field sensors give still better performance. In these experiments, the

rotation is allowed to decay below the threshold of rotational stabilization. Feedback control then

prolongs the stable duration as the plasma continues to become more unstable.

Internal radial field sensors (saddle loops) are found to yield a modest improvement in

feedback control over the external saddle loops, as shown in Fig. 11. In this comparison [9,10],

“smart shell” control using the external saddle loops extended the duration of the high beta phase

of the discharge by about 50 ms, while use of the internal saddle loops extended the duration by

an additional 50 ms. This is consistent with the predictions of the analytic models and the more

detailed predictions of MARS and VALEN (Fig. 9) that there is a modest improvement from

moving the radial field sensors closer to the plasma.

Poloidal field sensors yield a greater improvement of RWM stability. In the discharges

shown in Fig. 12, feedback using the internal saddle loops extended the high beta duration by

only about 40 ms over the case with no feedback. In comparison, the use of poloidal field sensors

not only extended the duration by up to 200 ms over the no-feedback case, (about 40 wall times

for the n=1 mode) but also allowed the discharge to reach higher beta. With poloidal field

sensors, the beta here reaches a value about 50% higher than the estimated no-wall stability limit.

It is well known that plasma rotation is an important stabilizing influence on the RWM.

However, in this experiment, designed to have a strongly unstable RWM, there are at least two

indications that active feedback is necessary for the plasma to remain stable. First, note that the

cases in Fig. 12 without feedback and with radial field feedback experience the beta collapse

only after a relatively slow decay of the plasma rotation. On the other hand, there is no

preliminary decay of the rotation in the cases with poloidal field feedback; that is, loss of rotation

is not the reason the plasma becomes unstable. Second, in some of these discharges the feedback

control was turned off for brief intervals, leaving the control-coil current constant. In the example

shown in Fig. 13, the feedback is first switched off from 1350 to 1360 ms. There is no indication

of an instability, as expected since the case without feedback was stable at this time. The

feedback is again switched off from 1450 to 1460 ms, which is after the time when the cases
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without feedback and with radial field feedback became unstable. A resistive wall mode grows,

reaches an amplitude of about 3 G, and then decays when the feedback is restored. A small

decrease in beta also occurs during the instability. This clearly shows that feedback control is

necessary for stability of the plasma.

Direct measurements of the RWM growth rate show that feedback control with poloidal field

sensors stabilizes more strongly unstable resistive wall modes, as predicted by the analytic and

numerical models. When the RWM becomes unstable, the control coil currents saturate early in

the growth of the mode and can no longer follow the command of the feedback system.

Therefore, the observed growth rate during the beta collapse should be a good approximation of

the no-feedback growth rate. This observed growth rate is plotted in Fig. 14 for a set of

discharges that includes those of Fig. 12. The abcissa is βN/li; discharges of the type used here

with a fast current ramp have been found empirically and from GATO stability calculations to

have a no-wall stability limit of βN/li ~ 2.4. As expected, the RWM growth rate in Fig. 14

increases rapidly as beta is raised above the no-wall stability limit. Without feedback the RWM

has a growth rate of γτwall ~ 1 as expected. Radial field sensors provide stability up to γτwall ~ 2,

with little improvement in beta. However, poloidal field sensors provide stability up to γτwall ~ 6,

with an improvement in the stability limit up to βN/li ~ 3.3. The measured growth rates agree

well with the VALEN prediction for the growth rate without feedback, as shown in Fig. 14. Here

the VALEN prediction (Fig. 9) is scaled according to the no-wall and ideal-wall βN limits of

2.1 li and 4.2 li, calculated with DCON for one of these discharges; there are no free parameters.

A new set of twelve control coils inside the vacuum vessel, with accompanying poloidal field

sensors, is being installed for operation in 2003. This system is predicted to allow feedback

stabilization up to essentially the ideal wall-stabilized limit even in the absence of rotation [4].
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5.  FEEDBACK CONTROL OF RESONANT FIELD AMPLIFICATION

As discussed in Section 2, the resonant response of a stable RWM to a static, external n=1

field can be an important effect that causes strong damping of the plasma rotation as the plasma

approaches marginal stability [7]. DIII–D experiments [4,14] have shown that feedback control

can be an effective tool in reducing this “Resonant Field Amplification,” thus allowing the

plasma to maintain a high rotational frequency that stabilizes the RWM.

DIII–D experiments have consistently shown that feedback control to suppress resonant field

amplification is much more effective with poloidal field sensors than with radial field sensors. In

this case, the important factor is the decoupling of the poloidal field sensors from the control

coils. Resonant field amplification is a quasi-DC process, so the time response of the sensors is

not important. The difference in the sensors can be easily understood by considering a perfect

feedback system (i.e., the limit of large gain). The model of Eqs. (1–5) now becomes

ΦS = 0   , (27)

Φ = ΦP + ΦC + Φ0   , (28)

ΦP = (1+γ0) Φ   . (29)

A perfect feedback system regulates the sensor signal to zero [Eq. (21)]. The total flux at the

wall does not include induced wall currents in this quasi-DC case, but does include a constant

term Φ0 representing the static external n=1 field [Eq. (28)]. The model for the plasma response

remains the same [Eq. (29)], but we now consider the stable case where –1 < γ0 < 0 (in this

model, γ0 = –1 represents the case without plasma).

In DIII–D operation, the reference level for feedback control is typically determined after the

coil currents and plasma currents are established, but before the plasma beta is raised. Therefore,

to first approximation, the sensors do not detect static n=1 error fields (due to coil misalignments,

for example) but do detect the plasma’s response to these error fields as beta increases. In this

quasi-DC case we neglect induced wall currents in Eqs. (6-10), and the sensor signals become
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Idealized Mode Detection or Bp sensor ΦS = ΦP   , (30)

Smart Shell Br Sensor ΦS = ΦP + ΦC   . (31)

The poloidal field sensor detects only the plasma perturbation and thus is equivalent to the

idealized sensor. The smart shell Br sensor detects flux from the plasma and the control coil, but

not the static n=1 error field. Substituting these sensor definitions into the model of Eqs. (27–29)

we find:

Idealized Mode Detection or Bp sensor ΦP = 0   , (32)

Smart Shell Br Sensor ΦP = Φ0 (1+γ0)   . (33)

For comparison, the case without feedback (ΦS ≠ 0, ΦC = 0) would give

No feedback ΦP = Φ0 (1+γ0) / (−γ0)   . (34)

The no-feedback case [Eq. (34)] shows the expected resonant behavior, with the plasma

response becoming infinite at marginal stability (γ0 = 0). The Bp sensor with a perfect feedback

system reduces the plasma perturbation to zero [Eq. (32)]. However, the smart shell Br sensor is

only capable of reducing the plasma perturbation to a level comparable to the external error

field [Eq. (33)], which could still lead to significant drag on the rotation.

In principle, the AC compensated Br sensor [Eq. (9)] could be equivalent to the Bp sensor for

suppression of resonant field amplification, despite its poorer predicted performance against

unstable modes. This comparison has not yet been explored experimentally. The DC

compensated Br sensor [Eq. (8)] is limited to gains less than unity, and would be no more

effective than the smart shell system.

6.  DISCUSSION AND CONCLUSIONS

DIII–D experiments have shown that ideal kink modes can be stabilized at high beta by a

resistive wall, with sufficient plasma rotation. The critical rotation frequency scales as a small

fraction of the Alfvén frequency, and the magnitude is consistent with theoretical predictions.

However, the resonant response by a marginally stable resistive wall mode to static magnetic
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field asymmetries can lead to strong damping of the rotation. Careful reduction of such

asymmetries has allowed plasmas with beta well above the ideal MHD no-wall limit, and

approaching the ideal-wall limit, to be sustained for durations exceeding one second.

Feedback control is predicted to improve plasma stability by direct stabilization of the

resistive wall mode (with or without plasma rotation), or by reducing the asymmetry of the

external field. DIII–D experimental results show good qualitative agreement with the predictions

of simple analytic models and more realistic numerical models: internal radial field sensors

provide a modest improvement over radial field sensors outside the wall, and internal poloidal

field sensors provide a significant advantage over both sets of radial field sensors. The

improvement with poloidal field sensors is predicted and observed for both direct feedback

stabilization of the RWM and suppression of resonant field amplification. Assisted by plasma

rotation, direct feedback control of resistive wall modes with growth rates more than 5 times

faster than the characteristic wall time has been observed.

These results open a new regime of tokamak operation above the free-boundary stability

limit, accessible by a combination of plasma rotation and feedback control. This regime is

favorable for steady-state plasma with high fusion gain and a high fraction of bootstrap current.

Areas where more progress is still needed include the exact physics of the dissipation

mechanism involved in rotational stabilization, the related but more general issue of the plasma’s

response to static external magnetic perturbations, and a realistic model of feedback control in

the presence of plasma rotation. DIII–D’s new internal control coils should provide information

on all of these questions, by allowing greater control over plasma rotation with nonresonant

magnetic braking, greater flexibility in selecting the poloidal mode spectrum for magnetic

perturbations, and feedback control in a new regime of fast, internal control coils.
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Figure Captions

Fig. 1.  Beta significantly above the no-wall kink mode stability limit is sustained for ~1.5 s (blue) with a resistive
wall and plasma rotation. A similar discharge (red) without sufficient rotation has a beta collapse soon after
crossing the no-wall limit.

Fig. 2. (a) The 6-segment control coil (C-coil) surrounds the midplane of the DIII–D vacuum vessel. Normally the
coils are connected in three opposing (odd toroidal mode number) pairs. (b) Cross-section of the large major radius
side of the DIII–D vessel and coils, showing the C-coil, external and internal saddle loops (Br) and internal
magnetic probes (Bp).

Fig. 3. (a) Several similar discharges with varying plasma rotation show a critical rotation frequency for onset of
the RWM. (b) Scaling of the critical rotation frequency versus Alfvén time, for discharges with varying toroidal field
and density. The q-profiles and li are approximately the same. Solid curve is fit to data (equation shown).

Fig. 4.  (a) Pulsed n=1 magnetic perturbation produces a strong response in δBr and rotation damping for a plasma
above the no-wall limit, no response in a plasma below the limit. (b) Measured RWM damping rate (negative growth
rate) in plasmas that are above the no-wall limit and stabilized by rotation.

Fig. 5.  Comparison of C-coil current and beta for discharges without optimum error field correction (106530), with
feedback-controlled error field correction (106532), and error correction currents pre-programmed to approximate
the feedback controlled currents (106534).

Fig. 6.  Magnetic field symmetrization allows sustained operation with beta above the no-wall stability limit
(107603). A similar discharge with slightly higher beta ends in a disruption (106535).

Fig. 7. (a) Growth rate and toroidal rotation of the precursor to the disruption in discharge 106535. (b) Calculated
growth rate vs. assumed wall position, 40 ms before the disruption. The plasma is stable with a wall at the DIII–D
wall position, but reaches marginal stability if βN is increased slightly above the experimental value.

Fig. 8.  RWM stabilization by plasma rotation (with feedback-controlled magnetic field symmetrization) allows
sustained operation at high normalized beta in a high bootstrap fraction discharge.

Fig. 9.  VALEN predictions for kink mode stabilization in DIII–D, with feedback control using the C-coil set. Shown
are cases with no feedback, external radial field sensors, internal radial field sensors, poloidal field sensors, and an
ideally conducting wall.

Fig. 10.  Range of gain values G (shaded) to stabilize a mode with open-loop growth rate γo, for various types of
sensors located just inside the resistive wall.

Fig. 11.  Comparison of feedback control with internal and external radial field sensors, and no feedback, showing
the time evolution of (a) plasma current, (b) normalized beta, (c) toroidal rotation at the q=2 surface, and
(d) amplitude of the n=1 resistive wall mode.
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Fig. 12.   Comparison of feedback control with poloidal field sensors (106193, 5, 7), radial field sensors (106187),
and no feedback (106196), showing the time evolution of (a) plasma current, (b) normalized beta, (c) toroidal
rotation at the q=2 surface, and (d) amplitude of the n=1 resistive wall mode.

Fig. 13.  Effects of switching off the feedback control (shaded intervals) in discharge 106197, showing (a) RWM
amplitude from the radial field sensors, (b) current in one of the C-coil pairs, and (c) the stability parameter βN/li.
An RWM grows during the second, higher-beta interval. No mode growth occurs in discharge 106193 where the
feedback was not switched off.

Fig. 14.  Observed resistive wall mode growth rate, normalized to the wall time constant τwall ~ 5 ms, versus the
stability parameter βN/li. Solid curve is the growth rate predicted by VALEN, with the calculated no-wall limit of
βN = 2.1 li and ideal-wall limit of βN = 4.2 li.


