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ABSTRACT

Under the APEX program the He-cooled system design task is to evaluate and recommend

high power density refractory alloy first wall and blanket designs and to recommend and initiate

tests to address critical issues. We completed the preliminary design of a helium-cooled, W-5Re

alloy, lithium breeder design and the results are reported in this paper. Many areas of the design

were assessed, including material selection, helium impurity control, and mechanical, nuclear

and thermal hydraulics design, and waste disposal, tritium and safety design. System study

results show that at a closed cycle gas turbine (CCGT) gross thermal efficiency of 57.5%, a

superconducting coil tokamak reactor, with an aspect ratio of 4, and an output power of 2 GWe,

can be projected to have a cost of electricity at 54.6 mill/kWh. Critical issues were identified and

we plan to continue the design on some of the critical issues during the next phase of the APEX

design study.
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1.  INTRODUCTION

Under the APEX program [1] the goal for the He-cooled system design task is to evaluate

and recommend robust high power density refractory alloy, He-cooled first, wall and blanket

(FW/blanket) design options; and to recommend and initiate tests to address critical issues.

Because of the projected high allowable operating temperature of the refractory alloy, it has the

potential of leading to a high thermal efficiency FW/blanket design. We initiated our task by

designing for an average neutron wall loading of 7 MW/m2, a surface heat flux of 2 MW/m2, and

a peaking factor of 1.4. To meet these severe design goals, we evaluated the use of refractory

alloys like Ta, Mo, W, Nb and V alloys in 1998. In 1999, with support from the APEX team, we

performed the preliminary design of the W-alloy FW/blanket concept. We projected the

properties of W-5Re alloy and evaluated the issue of material compatibility. For the first wall

heat transfer design we evaluated the possible use of porous medium and swirl tube options. We

performed thermal hydraulics, nuclear, activation and safety designs and analysis. High-pressure

helium coolant at 12 MPa was used and coupled to a closed-cycle gas turbine (CCGT) power

conversion system (PCS). These results were then used in a system code design to evaluate the

cost of electricity (COE). At the same time the critical issues related to this blanket were

identified. A summary of the preliminary design of the refractory alloy helium-cooled breeder

FW/blanket concept developed under the APEX program is presented in the following sections.
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2.  MATERIAL SELECTION AND COMPATIBILITY

The APEX goal for high operating temperatures (~1000°C) for the structure in the high

power density He-cooled concept severely limits the structural materials that can be considered.

Pure tungsten or tungsten alloyed with ~5%Re (to improve fabricability) appear to be suitable

candidates. The unirradiated mechanical properties of tungsten are strongly dependent on

thermomechanical processing conditions. The best tensile and fracture toughness properties are

obtained in stress-relieved material. In order to be conservative, since data are not available on

the possibility of radiation-enhanced recrystallization of W, and also to account for the presence

of welds in the structure, the preliminary design is based on recrystallized mechanical properties.

There are no known mechanical properties data on tungsten or tungsten alloys at irradiation and

test temperatures above ~800°C. There are no known fracture toughness or Charpy impact data

on tungsten irradiated at any temperature. Pronounced radiation hardening is observed in W and

W-Re alloys irradiated at temperatures of 300-500°C to doses of ~1–2 dpa, which produces

significant embrittlement in tensile tested specimens (~0% total elongation). Simple scaling from

existing data on irradiated Mo alloys suggests that the operating temperature for W should be

maintained above ~800°–900°C in order to avoid a significant increase in the ductile to brittle

transition temperature (DBTT). The upper operating temperature limit for tungsten will be

determined by thermal creep, helium embrittlement, or oxide formation issues. The thermal creep

of W becomes significant at temperatures above ~1400°C. Helium embrittlement data are not

available for tungsten; however, based on results obtained on other alloys, helium embrittlement

would be expected to become significant at temperatures above ~1600°C (~0.5 melting

temperature, TM). The formation of volatile oxides is another potential problem in tungsten at

temperatures above ~800°C, especially during an up-to-air event. However, if the oxygen partial

pressure in the helium coolant can be maintained at or below 1 appm, then the rate of corrosion is

calculated to be less than 2 µm/year for temperatures up to ~1400°C. In summary, the selected
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upper temperature limit for tungsten in the structure of the preliminary design He-cooled system

is 1400°C, depending on the applied stress.

2.1.  He COOLANT IMPURITY CONTROL

Refractory metals like W, Mo, and V are sensitive to grain boundary oxidation and

embrittlement.  However, if the oxygen (including H2O, CO2, CO…etc.) partial pressure in the

helium coolant can be maintained at or below 1 appm, then the rate of corrosion may be

acceptable. With the use of CCGT as the PCS, without the need of using high temperature water

as the secondary coolant, the ingress of oxygen impurities should be much lower than the system

that uses a high temperature intermediate heat exchanger. For impurity extraction, several

powder metal solid getters have been developed. Most are based on zirconium metal (ZrAl,

ZrVFe…etc.). With these materials, hydrogen can be pumped reversibly by temperature control.

These solid getters will pump active gases (oxygen, oxides, N, and C xHy) irreversibly and have

been used on the tokamak experiment TFTR. In the semi-conductor industry, getters have

recently achieved the control of impurities to a level lower than 1 appb. These are commercial

modular units with no moving parts and are self-monitoring in design. Sandia National

Laboratory is planning to install a prototype on the helium loop fusion high heat flux testing

facility.
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3.  MECHANICAL DESIGN AND RELIABILITY

The mechanical design of the helium cooled refractory blanket concept must satisfy the basic

APEX design goals. These goals include minimum requirements on heat removal, shielding,

tritium breeding, and availability as well as provisions for heating and diagnostic penetrations,

vacuum pumping, and plasma exhaust (divertor). Several first wall and blanket system

configurations were evaluated. The mechanical design is shown in Fig. 1. The helium cooled

refractory alloy design includes a high temperature helium-cooled first wall and a lithium bath

that is also cooled with high temperature helium. The first wall is made up of separate units,

which in this case are connected to separate cooling manifolds at the back of each module. The

first wall units consist of multiple parallel passages connected through an integral manifold to

round inlet and outlet connections. The large modules contain the lithium in a single volume,

with pure lithium in the breeding zone and a combination of lithium and steel balls in the

shielding zone. The temperature is relatively uniform, although there will be some gradients,

albeit transient, between the front and back structural walls. There are two inboard and three

outboard modules to each of the 16 sectors arranged in the toroidal direction.  The piping is

routed in two circuits. The first circuit includes the first wall and part of the interior heat

exchange tubing. Helium at 800°C enters the first wall through the supply manifold and exits

into the first wall outlet manifold at 950°C. The helium is then routed inside the lithium can to

the first supply manifold for the heat exchange tubes. The first tube circuit exits into a return

manifold at 1100°C. The second tube circuit is fed at 800°C and exits at 1100°C.

One of the primary goals of the APEX study is to increase the availability of fusion reactors

by increasing the mean time between failures and by decreasing the mean time to repair. To this

end, we recommended the approach of sector maintenance, modular maintenance for everything

and pre-tested modules for all components.
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First Wall/Blanket
Inlet – 19 cm dia.

First Wall Shroud with
(12) 2.2 cm dia.

Cooling Passages per shroud

Blanket Inlet
19 cm dia.

Blanket Tubes
22 cm dia. Blanket Outlet

22 cm dia.
First Wall Outlet

Blanket Inlet
19 cm dia.

Lithium
“Can”

Fig. 1.  Helium cooled first wall and divertor design module.
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4 .  FIRST WALL BLANKET THERMAL-HYDRAULICS DESIGN AND ANALYSIS

4.1.  DESIGN INPUTS

With the mechanical design concept described in Section 3, we determined the material

volume fractions and power generation from different FW/blanket zones. We performed iterative

calculations between thermal hydraulics and nuclear analysis. The normalized volumetric power

density for W-alloy as a function of distance x from the first wall is approximated by PW(x) =

9e–3x w/cc per neutron wall loading in MW/m2. The normalized volumetric power density for

Li-breeder is approximated by PLi(x)=4e-3x w/cc. Other input parameters are:

Reactor power output 2005 MWe

Helium pressure 12 MPa

Helium mass flow-rate 2528 kg/s

Helium Tin/Tout  800°C/1100°C

Structural material W-5Re

Max. neutron wall loading 7.49 MW/m2

Max. surface heat flux 2.16 MW/m2

4.2.  FIRST WALL DESIGN

The use of helium as a FW/blanket, divertor coolant has been proposed in various fusion

design studies. For example, helium cooling was selected for the ARIES-I tokamak reactor

design [2]. Analysis of the effectiveness of heat transfer enhancers such as surface roughening

and fins was done for helium-cooled divertor options for ITER [3], and a further review of heat

transfer enhancement was performed by Baxi [4]. To handle the high surface heat load, extended

heat transfer enhancements by porous medium and swirl tape were evaluated.
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4.2.1.  Porous Medium

A porous medium enhances heat transfer from the wall to the helium thereby reducing the

film temperature drop and the absolute temperatures of the first wall. The design activity

reported here was based in part upon development activities by two small U.S. businesses. One

of the companies, Thermacore, Inc. uses a porous medium to enhance heat transfer. Thermacore

designed and built a series of helium-cooled modules that were tested at Sandia and

elsewhere [5–7]. One advance in their development of a helium-cooled heat sink was the

development of designs that connected open axial inlet and exhaust passages to circumferential

flow passages that contained the porous medium, as shown in Fig. 2. The other company,

Ultramet, Inc. has experience in fabrication of refractory materials. Ultramet has designed and

built commercial products made of refractory metals for rocket nozzles and other applications in

which they use a metallized foam that is integrally bonded to fully dense material [8], as shown

in Fig. 3. Their experience demonstrates that a tungsten channel with integrated porous medium

structure can be fabricated.

To minimize the thermal stress, thermal analysis of 2-D models was done on a double tube

wall design for a surface heat load of 2 MW/m2 and an internal pressure of 10 MPa. At 1000°C,

the maximum von Mises stress is 80 MPa which is much lower than the allowable total stress

Fig. 2.  Thermacore circumferential flow design porous Ta implant.
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Fig. 3.  Porous Ta implant, diameter = 0.75 in.

(primary+secondary) of 228 MPa = ultimate stress. Further iteration will be needed for the

reference case of 12 MPa pressure but the result should not be significantly different. The double

tube wall design will then be incorporated into the porous medium design in the next design

phase.

4.2.2.  Swirl Tape First Wall Design

Another method for extended surface heat transfer is to use a swirl tape insert. Swirl tape

increases the heat transfer coefficient by increasing the effective flow velocity of the coolant and

increasing mixing. There is a large amount of reliable data available on this method. However,

the corresponding increase of coolant flow friction factor has to be accounted for.

For this calculation the enhancement in heat transfer coefficient is given by, hen=2.18/Y0.09,

and the increase in friction factor is given by fen=2.2/Y0.406, where Y is the twist ratio defined by

pitch/2*diameter of the tube. Therefore the equivalent heq = hen*h and equivalent friction fractor

feq = fen*f, where h and f are heat transfer coefficient and friction factor for a simple circular

tube, respectively. In the following calculation we used Y=2.
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Using a maximum neutron wall loading of 7.11 MW/m2, and maximum surface heat flux of

2.06 MW/m2, and the swirl-tube first wall coolant velocity range of 54 to 62 m/s, the W-alloy

maximum temperature was found to be in the range of 1073°C to 1242°C. With simple tubes in

the blanket, the W-alloy maximum temperature is 1199°C, and the lithium maximum

temperature is 1228°C.

The first wall and blanket system pressure drop was also estimated. Including frictional

losses, turns, contractions, expansions, and main helium inlet and outlet pipes, the total pressure

drop was estimated to be 0.61 MPa, which gives a ∆P/P of 5.1%.

4.3.  THERMAL STRESS ANALYSIS OF APEX FIRST WALL DESIGN

A “ground rule” of the APEX study was that structures should be robust, and specifically,

3 mm was taken as a nominal first wall thickness. A central challenge in the design is to relieve

the primary and secondary stresses that results from the high helium pressure, surface heat load

and the related steep thermal gradient in the heated surface. The FW is permitted to flex to

relieve the thermal strain (bending stresses) form the surface heat load.

A thermal analysis of a dual channel FW structure (without the porous medium included)

was performed using 2-D plane strain models (PATRAN/ABAQUS) for a surface heat load of

2 MW/m2 and an internal pressure of 10 MPa; the FW was permitted to flex under the heat load.

At 1000°C, the maximum von Mises stress is 80 MPa, this is well within the suggested stress

limits stated below. Further iteration will be needed for the reference case of 12 MPa pressure

but the result should not be significantly different. The double tube wall design will then be

incorporated into the porous medium design in the next design phase.

The thermal stress due to a prescribed temperature distribution along a single tube first wall

of the APEX FE/blanket was also analyzed using the COSMOS finite element code. The

structural model consisted of 2-D beam elements interconnected along with the defined

temperature distribution. The first wall tube has an ID of 1.6 cm and an OD of 2.2 cm. The beam
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elements representing the lithium case are 0.2 × 2.2 cm for the inner case and 3.8 × 2.2 cm for

the outer strong back case. The lithium case is supported by a guide structure attached to the

vacuum vessel. It is assumed that the guide structure allows free thermal expansion of the lithium

case in the vertical and radial directions. The following W-5Re alloy properties were taken at

1000°C:

Young’s modulus = 392 GPa

Poisson’s ratio = 0.267

Coefficient of thermal expansion = 3.96×10-6/°C

The deformed shape and maximum stress due to the prescribed assigned temperature

distribution and boundary conditions were calculated. The tangential thermal growth of the first

wall tube of 2.0 mm requires that the blanket modules be installed with 4.0 mm gaps in the cold

condition to prevent contact with one another during operation. The radial thermal growth of the

plasma facing tube is 4.4 mm.

Since we projected that the irradiated W-alloy should be treated more as a brittle than ductile

structural material, we proposed that the stress criteria for evaluating calculated stress intensities

for tungsten materials be taken as 1/2 the ultimate stress (133 MPa) at 1000°C for welded joints

and 2/3 the ultimate stress (177 MPa) away from joints. Adopting these criteria, the allowable

stress at the weld joint due to all load combinations is 152 MPa at 1000°C.

Since the proposed support structure will allow free thermal expansion of the lithium case,

only the temperature difference between the first wall tube and lithium case will induce thermal

stresses. The maximum thermal stress occurs in the first wall tube at its junction to the lithium

case and is only 6 MPa.
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Although the proposed concept for supporting the blanket induces low thermal stress, details

of how to implement the support concept will certainly result in higher thermal stresses. Also, the

stresses due to dead weight, pressure, and disruption loads have yet to be calculated. This will be

performed in the next phase of design.
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5.  NUCLEAR ANALYSIS

Based on the material volume fractions generated, we iterated with the thermal hydraulics

task and assessed the impact of W-alloy on the nuclear heating profiles across the blanket and

power multiplication (PM), and on the tritium breeding profiles and the tritium breeding ratio

(TBR). The impact of Li-6 enrichment on these profiles and on TBR and PM is also assessed. In

addition, we assessed the damage indices, expressed in terms of DPA, helium, and hydrogen

production rates at several key locations, including the vacuum vessel (V.V.) and TF coil case.

When compared to other refractory alloys like TZM and Nb-1Zr, the best local TBR

performance is with W and Li breeder. The TBR increases with Li-6 enrichment and starts to

saturate at a value of ~1.43 when Li-6 enrichment is ~35%.

The damage parameters, dpa rate, helium and hydrogen production rate at various locations

were estimated in the W-alloy design. Compared to the liquid breeder Flibe, liquid lithium is the

less effective material in attenuating the nuclear flux at the V.V. and TF coil by a factor of 6 to

10.

The radioactive waste characteristics of the different components of the machine were

evaluated according to both the NRC 10CFR61 [9] and Fetter waste disposal concentration limits

(WDR) [10]. According to Fetter limits, the first wall, module wall, blanket, and transitional

zone would not qualify for disposal as Class C waste. As a matter of fact the W-5Re alloy

produces such a high activity that the first wall would have a WDR which is more than order of

magnitude higher than the Class C WDR limits. The high WDR is due to the 186mRe, 108mAg,

and 94Nb isotopes. Only 186mRe is a product of nuclear interactions with base elements in the W-

5Re alloy.
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6.  POWER CONVERSION SYSTEM

The major incentive for employing high-temperature refractory alloy FW/blanket with

helium cooling in this design is to enable direct coupling with a CCGT (Brayton Cycle) for high

efficiency power conversion. This has the advantage of eliminating an intermediate high-

temperature He/He heat exchanger (HX), which would be a significant technical challenge.

However, the potential for tritium contamination in the power conversion system (PCS) must be

addressed, and appropriate design measures must be taken to prevent further spread of

contamination and to facilitate maintenance of PCS components. Figure 4 shows the effect of

FW/blanket inlet temperature variation on PCS performance for the selected outlet temperature

of 1100°C. Based on this the selected gross efficiency for the preliminary design is 57.5%.
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Parameter values ideally chosen as follows:
Recuperator effectiveness 96%
Turbine efficiency 93%
Compressor efficiency 88%
DP/P @ 120 atmos; 1100°C 6.0%
Number of intercoolers 2
Wet bulb temperature 18°C

Fig. 4.  Effect of FW/blanket inlet temperature on power conversion system gross efficiency.
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7.  TRITIUM MIGRATION AND CONTROL

Ttitium produced in the lithium has to be recovered with an acceptable tritium inventory. The

design goal of the tritium recovery system for lithium is usually to limit the tritium concentration

to about 1 appm. This goal is to limit the total tritium inventory in the lithium to less than 200 g.

The 200 g tritium inventory in one unit in the fusion power plant is the safety limit selected for

the ITER design.

Many processes have been proposed to recover tritium from lithium. A recent proposal is to

recover tritium using the cold trap process [11]. This process has been demonstrated to recover

tritium from lithium to the saturation concentration [12]. However, the saturation tritium

concentration at 200°C is about 250 appm, far exceeding the design goal of 1 appm. The new

proposal is to add protium to the lithium. With the total hydrogen concentration at the saturation

limit of 250 appm, the tritium concentration can be below 1 appm. The design of the process and

the cost associated with the separation of T from H was calculated for ITER [13] and was judged

to be acceptable.

The lithium flow rate for tritium recovery is 20 kg/s. This is a very small flow rate. To

maintain uniform tritium concentration, the local flow rate has to be controlled. The tube bank

configuration of the preliminary design is amenable to radial segmentation, but the detailed

design of lithium flow control from all regions inside the blanket will still be a challenge. If the

lithium flow rate is non-uniform, certain local tritium concentrations will be high, and higher

tritium inventory can be expected. This design impact will have to be assessed.

Tritium will permeate to the He coolant both by pressure driven from the blanket and by

plasma driven permeation across the first wall, so a tritium clean up system will be required.

Recent experimental results from Tritium System Test Assembly (TSTA) [14] shows that a

permeation window can be used for tritium cleanup from a gas. This process is capable of

removing tritium from a gas to ~ 1 Pa. Since permeation is not a critical issue for this design,

1 Pa tritium partial pressure may be acceptable. The effect of this tritium partial pressure on the
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operation of the pumps and valves will have to be assessed. As presented in the last section, the

problem of PCS contamination will have to be addressed also.
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8.  SAFETY

8.1.  DECAY HEAT REMOVAL

The use of tungsten as the structural material in this concept poses some safety challenges.

Tungsten is a radiologically hazardous material with high decayheat, so we must ensure that the

design is such that long-term accident temperatures are low enough that unacceptably large

amounts of tungsten are not mobilized during an accident. Our preliminary calculations show

that design options exist that result in long-term temperatures below 800°C. Details can be found

in McCarthy et al. [15].

8.2.  OTHER SAFETY ISSUES AND RELIABILITY ISSUES

Because liquid lithium is present in this design to provide tritium breeding, safety design

necessary for the use of lithium in a power producing system will have to be followed. As more

design details become available, further safety analyses will be done to ensure that safety

requirements are met. Similarly, a reliability assessment will need to be done when more design

details are available.
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9.  SYSTEM DESIGN

With the potential of the high performance helium-cooled W-alloy FW/blanket design, the

economics of a tokamak reactor was assessed by utilizing the GA-system code [16]. Physics

parameters were based on the results from plasma equilibrium calculations. This code uses

ARIES-RS [17] and ARIES-ST [18] as reference design points, and the performance and cost of

electricity (COE) of superconducting and normal conducting coil reactors could be projected for

difference aspect ratio, power output and neutron wall loading designs [16]. Based on the

projected gross thermal efficiency of 57.5%, the maximum neutron wall loading only needs to be

operated at 7.2 MW/m2, with a corresponding maximum first wall heat flux of 2.07 MW/m2. In

summary, at the thermal efficiency of 57.5%, a superconducting reactor with an aspect ratio of 4

and an output power of 2 GWe is projected to have a COE of 54.66 mill/kWh.
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10.  KEY ISSUES AND R&D

We have completed the preliminary design of a helium-cooled refractory alloy FW/blanket

design. Many development issues are identified in different areas of the design. The following is

a list of key issues, grouped by areas, which will have to be addressed in order to become a

viable design.

Materials: Irradiated and engineering design material properties of W-alloy

Design criteria for W-alloy

Fabrication of W-alloy components

Minimum cost of fabricating W-alloy components

Compatibility between helium impurities and W-alloy

Design: Coolant routing

Structural support

High temperature piping

Develop robust high performance components

Thermal hydraulics: Helium flow control, distribution and stability

FW/Blanket temperature management and startup

Removal of afterheat during LOCA

Plasma interaction: W-surface compatibility with high performance plasma

Tritium: Extraction, inventory and PCS contamination

In addition, the availability of fusion power core components will have to be demonstrated.
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11.  CONCLUSIONS

We completed the preliminary design of a high performance He-cooled W-5Re alloy

FW/blanket design. A separate first wall that is permitted to flex under heating and a lithium pool

configuration was selected. Due to the lack of irradiated data, conservative assumptions on

selecting the W-alloy properties have to be used. With regard to the compatibility of W-alloys

with oxygen as the primary helium impurity, commercially available solid gettering modules can

maintain the impurity level to < 1 appm and prevent embrittlement. Potentially, based on the

results of selected analyses, the FW/blanket design could meet the material temperature and

structural design limits, provided that the peak structural loading during disruptions can be

mitigated. The 1-D tritium breeding ratio of 1.43 can be reached with a Li-6 enrichment of 35%.

But the presence of induced radioactivity will not allow the W-alloy components to meet the

criteria for classification as low level waste. W-alloy will generate a high level of afterheat, but,

with the tritium extraction system operating, long-term accident temperatures remain below

800°C. A cold trap process with added protium to the lithium could be used for tritium

extraction. At the CCGT gross thermal efficiency of 57.5%, a superconducting reactor with an

aspect ratio of 4 and an output power of 2 GWe is projected to have a COE of 54.66 mill/kWh.

Critical issues were identified and we plan to continue the evaluation on some of the critical

issues during the next phase of the APEX design study.
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