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Recent advances in gyro-fluid simulation of Ion Temperature Gradient modes in tokamaks have shown

that the predominant saturation mechanism for the instability is the production of m=n=0 primarily poloidal

flows which vary with radius and serve to shear-stabilize the instability. Thus the damping of such poloidal

flows is critically important in determining the turbulence level to be expected, and the adequacy of gyro-

fluid models for calculating the damping is an issue. We solve kinetically a relevant model problem, and

suggest it as a benchmark for gyro-fluid simulations. We calculate the linear collisionless damping of

poloidal rotation with particular interest in the level of buildup of such rotation as fed by ITG modes. We

find that, after a transient of a few ion transit times, the kernel relating the rotation to the nonlinear

source asymptotes to a plateau value which would then slowly damp according to neoclassical collisional

damping. This plateau value is compared with gyro-fluid predictions. A higher value would imply a stronger

shear-stabilizing effect, and hence a lower level of ITG turbulence.
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1. Introduction

Recent advances in gyro-fluid simulation of Ion Temperature Gradient modes in tokamaks have shown

that the predominant saturation mechanism for the instability is the production of radial modes, which

are m=n=0 primarily poloidal flows1,2,3 which vary with radius and serve to shear-stabilize the instability.

For example, Fig.5.7 of Ref.1 indicates more than an order of magnitude decrease in turbulent diffusion

when the gyrofluid approximation to collisionless damping of the poloidal rotation is turned off. Thus the

damping of such poloidal flows is critically important in determining the turbulence level to be expected.

The adequacy of gyro-fluid models for calculating the damping is an important issue, especially in view

of claims that such ITG turbulence would severely limit confinement in reactor sized tokamaks4. In this

note, we solve kinetically a relevant model problem, the linear collisionless damping of poloidal rotation

with particular interest in the level of buildup of such rotation as fed by ITG modes. Our result is that

the poloidal rotation, even if driven by a rapidly fluctuating source, is not damped by collisionless magnetic

pumping. This implies a larger level of poloidal flows, a stronger shear-stabilizing effect, and hence a lower

level of ITG turbulence than predicted by the gyro-fluid simulations.
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2. Gyrokinetic Equation with Source

We will consider the linearized gyrokinetic equation with a “source” representing the nonlinear driving

by ITG turbulence. In order to find out what the source looks like, we first derive the gyrokinetic equation

and identify the source with the nonlinear terms.

We start with the Vlasov eqn. for electrons and ions:

∂f

∂t
+ ~v · ∇f +

e

m
(−∇φ+ ~v × ~B/c) ·

∂f

∂~v
= 0 (1)

with the potential φ determined by quasineutrality:∑
j

ej

∫
d3v fj = 0 (2)

We write the distribution function as the sum of equilibrium and perturbation:

f = F + δf (3)

where F is a solution of

~v · ∇F + Ω~v × b̂ ·
∂F

∂~v
= 0 (4)

with Ω = eB/(mc), the gyrofrequency.
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      The equilibrium F varies slowly perpendicular to ~B: ρ/Ln ¿ 1, where ρ is the gyroradius and Ln

is the equilibrium scale length. To lowest order in ρ/L the equilibrium is

F = F0(~x⊥ − ~ρ, E) (5)

where ~ρ = b̂× ~v/Ω with b̂ = ~B/B and E = (m/2)v2. It will be chosen to be a Maxwellian at

temperature T .

The potential φ is considered small in the sense eφ/T ¿ 1 and so the distribution function response,

δf is also small: δf/F ¿ 1. The perturbation δf and φ vary rapidly perpendicular to ~B: k⊥ρ ∼ 1.

We write the perturbation as

δf = −
eφ

T
F0 + g (6)

which defines the nonadiabatic part g, and then change variables to facilitate removing the fast gyration

from the problem: (~x,~v)→ (~R, v⊥, v‖, α), where the guiding center position is defined by

~R = ~x− ~ρ = ~x−
b̂× ~v

Ω
(7)

with

~v = b̂v‖ + v⊥(ê1 cosα+ ê2 sinα) (8)
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      The function g is expanded in ε = ρ/Ln ∼ ω/Ω ∼ k‖ρ: g = g0 + g1 + · · ·. The leading order

equation is Ω∂g0/∂α = 0, while the next order equation yields the constraint equation (the gyrokinetic

equation) for g0 (now called g):

∂g

∂t
+ (v‖b̂+ ~vd) · ∇~R g =

e

T
F0

∂〈φ〉α
∂t

− ~vE · ∇F0 + 〈S〉α (9)

where ∇~R is the gradient taken with respect to ~R and where ~vd is the guiding center drift velocity:

~vd = −v‖b̂×∇
(
v‖/Ω

)
(10)

with v‖ = [2(E/m−µB)]1/2. The independent velocity variables used now are E = m(v2
⊥+v2

‖ )/2,

the energy, µ = v2
⊥/(2B), the magnetic moment, and α, the gyroangle. The average over gyroangles

holding guiding center position fixed is defined by

〈φ〉α =

∮
dα

2π
φ(~R+ ~ρ, t) (11)

and the averaged ExB drift velocity is

~vE =
c

B
b̂×∇~R 〈φ〉α (12)

The nonlinear terms have been included in

〈S〉α =

∮
dα

2π

e

m
∇φ(~R+ ~ρ, t) ·

(
∂

∂~v′
+
b̂

Ω
×∇~R

)
δf(~R+ ~ρ,~v′, t) (13)
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      where ∂/∂~v′ represents the velocity derivatives holding ~R fixed. These velocity derivatives will be omitted

because they do not affect the density moment, holding ~R fixed. This nonlinear term will be treated as a

known source.

We now use a Fourier representation in the coordinates perpendicular to the magnetic field:

φ(~x, t) =
∑
~k

φk exp(i~k⊥ · ~x) (14)

where φk depends on distance parallel to ~B and time. Averaging over gyroangle keeping ~R fixed gives

〈φ〉α =
∑
~k

J0(k⊥ρ)φk exp(i~k⊥ · ~R) (15)

where J0 is a Bessel function. Then g has a corresponding Fourier representation in the guiding center

position:

g(~R, t) =
∑
~k

gk exp(i~k⊥ · ~R) (16)

and so does the averaged source term:

〈S〉α = F0

∑
~k

Sk exp(i~k⊥ · ~R) (17)
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      The linearized gyrokinetic equation becomes

∂gk

∂t
+ v‖b̂ · ∇gk + iωDgk =

e

T
F0J0

∂φk

∂t
− ~vE~k · ∇F0 + SkF0 (18)

where the drift frequency is defined by

ωD = ~k⊥ · ~vd (19)

and

~vE~k =
ic

B
b̂× ~kJ0φk (20)
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3. Properties of the Source

Using the definition of the nonadiabatic part g,

δf(~x,~v, t) = −
e

T
F0φ(~x, t) + g(~x− ~ρ,~v, t) (21)

and the gyroaverage (keeping R fixed),

〈δf〉α = −
e

T
F0〈φ〉α + g(~R,~v, t) (22)

the source can be written as

〈S〉α ' −
c

B
b̂×∇~R 〈φ〉α · ∇~R 〈δf〉α (23)

Since 〈δf〉α is the guiding center distribution function (the gyrophase-independent part) the source rep-

resents the convection of the guiding center density in phase space by the gyroaveraged ExB motion. The

electron and ion sources cause a buildup of the electrostatic potential on a magnetic surface, because for

finite ion gyroradius, the electron and ion terms in the quasineutrality condition do not cancel.

Using the Fourier representation for φ and a similar one for δf , the Fourier coefficient of the source

is given by

SkF0 =
c

B
b̂ ·
∑
~k′

~k′⊥ × ~k⊥J0(k′⊥ρ)J0(|~k⊥ − ~k′⊥|ρ)φ~kδf~k−~k′ (24)
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     In the limit of zero gyroradius, quasineutrality can be used to show that the density moments of the

electron and ion sources are equal:

∑
j

ej

∫
d3v 〈Sj〉α → 0 (25)
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4. Response to Axisymmetric Part of Source

We now consider the response to that part of the source which has no dependence on toroidal angle,

i.e. the n = 0 part. The Fourier sum may be interpreted as a sum of terms of the form

φ(~x, t) = φk exp(iS) (26)

where the eikonal function S contains the fast spatial variation perpendicular to ~B. Then the wave vector

is ~k = ∇S, so ωD = ~vd · ∇S. To correspond to n = 0, the eikonal must be a function of ψ only:

S = S(ψ), so ~k = ∇ψS′(ψ). The ExB drift term is zero: ~vE~k · ∇F0 = 0, and the linearized

gyrokinetic equation is

∂gk

∂t
+ v‖b̂ · ∇gk + iωDgk =

e

T
F0J0

∂φk

∂t
+ SkF0 (27)

The drift frequency is

ωD = (~vd · ∇ψ)S′(ψ) = v‖b̂ · ∇Q (28)

where

Q = I
v‖

Ω
S′(ψ) (29)

with I ≡ RBφ.
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5. Integral Equation for Long Time Response

For times long compared to the ion bounce period, ω/ωb ¿ 1 with ω the inverse of the time scale

and ωb = vi/L‖ is the bounce frequency, we let gk = g0 + g1 + · · ·, We shall take ωD ∼ ωb, since

Q may be of order unity. The zeroth order equation is

v‖b̂ · ∇g0 + iωDg0 = 0 (30)

whose solution has the form

g0 = he−iQ (31)

where Q = I(v‖/Ω)S′(ψ) and b̂ · ∇h = 0. The first order equation is

v‖b̂ · ∇g1 + iωDg1 = −
∂g0

∂t
+
e

T
F0J0

∂φk

∂t
+ SkF0 (32)

which yields the solubility condition which determines h:

∂h

∂t
=
e

T
F0

(
eiQJ0

∂φk

∂t

)
+ (eiQSk)F0 (33)

where the bounce average is defined by

A =

∮
dl
v‖
A∮
dl
v‖

(34)
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      with dl = Bdlp/Bp. For trapped particles, the integral goes over a closed orbit, while for untrapped

particles, it goes once around the poloidal circumference.

Thus, gk is given to lowest order for long times by integrating in time:

gk = e−iQ
[
e

T
F0(eiQJ0φk) +

(
eiQ

∫
dt Sk

)
F0

]
(35)

The electron expression is given by setting J0 = 1 and Q = 0.

The quasineutrality condition is

−
e

Ti
n0φk +

∫
d3v J0gik =

e

Te
n0φk +

∫
d3v gek (36)

which then yields the integral equation for φk:

n0e

(
1

Ti
+

1

Te

)
φk −

e

Ti

∫
d3v F0ie

−iQJ0(eiQJ0φk)−
e

Te

∫
d3v F0eφk = sk (37)

where the source terms are combined in the expression

sk =

∫
dt

{∫
d3v F0ie

−iQJ0(eiQSik)−
∫
d3v F0eSek

}
(38)
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6. Variational Principle

The integral equation can be solved with the use of a variational principle, which is constructed by

multiplying the terms in the integral equation by φ∗k and carrying out the integral over a magnetic surface,

using ∮
dlp

Bp

∫
d3v · · · =

∫
2πdEdµ

∮
dl

v‖
· · · (39)

where dl = dlpB/Bp. It is δV = 0, where V = (Vi + Ve)/|Vs|2 where

Vi =
e

Ti

∫
2πdEdµF0i


∮

dl

|v‖|
|φk|2 −

∣∣∣∣ ∮ dl
|v‖|e

iQJ0φk

∣∣∣∣2∮
dl
|v‖|

 (40)

Ve =
e

Te

∫
2πdEdµF0e


∮

dl

|v‖|
|φk|2 −

∣∣∣∣ ∮ dl
|v‖|φk

∣∣∣∣2∮
dl
|v‖|

 (41)

Vs =

∮
dlp

Bp

φ∗ksk (42)

Both Vi and Ve can be shown to be positive definite, using the Schwartz inequality and 1 − J2
0 ≥ 0.

It is straightforward to show that V is minimized for the exact solution of the integral equation, and that
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   the minimum value is V = 1/Vs. Because a positive minimum exists, it follows that a nontrivial solution

of the integral equation exists. Therefore the potential response to the axisymmetric part of the source is

not damped by collisionless processes.
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7. Solution for Small Gyroradius and Banana Width

The integral equation is now solved by expanding in δ = (kψρi)
2 ∼ (kψ∆i)

2 where kψ is the

radial wave number, ρi is the ion gyroradius, and ∆i is the ion banana width:

φk = φ0 + φ1 + · · · (43)

The source term is expanded similarly; the zeroth order term is zero if either (1) Sik and Sek are indepen-

dent of θ (m=0), or (2) Sik and Sek are independent of µ (isotropic). This follows from Eqs.(38) and

(25). Then

sk = s1 + · · · (44)

The source contribution to the variational principle, Vs, is of order δ and since the exact minimum of

V is given by V = 1/Vs, it follows that V is of order δ−1. Thus, expanding in δ, Vi + Ve =

V (0) + V (1) + · · ·, we have

V =
V (0) + V (1) + · · ·

|Vs|2
(45)

from which we conclude that

V (0) = 0 (46)

and

V (1) = Vs (47)
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      To zeroth order, the variational principle gives

V (0) = e
∑
j

1

Tj

∮
dlp

Bp

∫
d3v F0j

∣∣∣∣φ0 − φ0

∣∣∣∣2 = 0 (48)

which shows that φ0 must be uniform on a magnetic surface:

b̂ · ∇φ0 = 0 (49)

The zeroth order potential is determined by the next order terms in the variational principle, i.e. the

equation V (1) = Vs. Expanding to second order in k⊥ρ and Q ∼ k⊥v‖/Ωθ (related to banana width):

eiQJ0 ' 1 + iQ−
1

2
Q2 −

k2
⊥ρ

2

4
(50)

we have

V (1) =
e

Ti
|φ0|2

∮
dlp

Bp

∫
d3v F0i

[
Q(Q−Q) +

1

2
k2
⊥ρ

2

]
(51)

where

k2
⊥ρ

2 = |∇ψ|2 (S′(ψ))
2
ρ2 (52)

and

Q(Q−Q) = R2B2
φ (S′(ψ))

2 v‖

Ω

(
v‖

Ω
−
(
v‖

Ω

))
(53)

The term V (1) contains the classical polarization current as well as the collisionless neoclassical polarization

current.
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      The term V (1) can be written in terms of the polarization current:

V (1) = −φ0
∗
∮
dlp

Bp

ρk (54)

where

ρk = −
∫
dt i~k ·~jk = −iS′(ψ)

∫
dt ~jk · ∇ψ (55)

with the current density given by ~j = ~jclk +~jnck where the classical polarization current is given by

~jclk = −nimic
2∇ψ
B2

iS′(ψ)
∂φk

∂t
(56)

and the collisionless neoclassical polarization current5 is given by∮
dlp

Bp

~jnck · ∇ψ = −
e2R2B2

φ

Ti

∮
dlp

Bp

∫
d3v F0i

v‖

Ω

(
v‖

Ω
−
(
v‖

Ω

))
iS′(ψ)

∂φk

∂t

= −1.6

(
r

Ro

)3/2

nimic
2R2

oiS′(ψ)
∂φk

∂t

∮
dlp

Bp

(57)

where the integrals have been evaluated for large aspect ratio circular geometry6. The variational principle

provides a derivation of the collisionless neoclassical polarization current.
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      Similarly, Vs can be written to next order in δ. We assume that the source is even in v‖, so it does

not add parallel momentum to the plasma. Then

Vs = −φ0
∗
∮
dlp

Bp

∫
d3v F0i

[
1

2
(Q2 − 2QQ+Q2) +

1

4
k2
⊥ρ

2

] ∫
dt Sik (58)

Thus, V (1) = Vs gives

eφk

Ti
=
−
∮ dlp
Bp

∫
d3v F0i

[
Q(Q−Q)− 1

2
(Q2 −Q2) + 1

4
k2
⊥ρ

2
] ∫

dt Sik∮ dlp
Bp

∫
d3v F0i

[
Q(Q−Q) + 1

2
k2
⊥ρ

2
] (59)

For the part of the source which is independent of poloidal angle, i.e. the m = 0 part, this integral

can be evaluated explicitly. The potential response to the source is then

K ≡
eφk/Ti∫
dt Sik

' −1 (60)

neglecting the terms of order k2
ψρ

2
i compared with those of order k2

ψ∆2
i .

That is, there is a long-time plateau in the response function, which is not zero, showing that the

radially sheared potentials driven by the ITG turbulence source are not damped by transit time damping,

but only by the much weaker collisional damping7 (not included here).
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8. Kinetic Coupling to Poloidally Varying Sources

The coupling to poloidally varying sources is generally stronger than in fluid models. Assuming only

that ∮
dlp

Bp

s1 6= 0 (61)

that is, ∮
dlp

Bp

∫
d3v F0i

[(
Q−Q

)2
+
(
Q−Q

)2
+

1

2

(
k2
⊥ρ

2
)]
Sik 6= 0 (62)

(for example, Sik ∝ cos θ), Eqn.(59) gives

K ∼ 1 (63)

Thus, even for the m 6= 0 part of the source, the potential response is still generally strong, because of

the influence of trapped ions, which strongly couple to the source.

The exceptional case is for that part of the source for which Eq.(62) is not true (for example, Sik ∝
sin θ when B is even in θ). Then we find φ0 = 0, so that φ ∼ δ and hence

K ∼ δ (64)

In this case, the coupling is weak and so the response is weak.
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9. Mean Square Potential Fluctuation

We now use our result to show that the mean square potential fluctuation, and hence the poloidal

rotation, driven by the source is not damped by collisionless processes. The linear response to the source

can be written in terms of the response kernel K as

φ̃k(t) =

∫ t

0

dt′ K(t− t′)Sk(t′) (65)

where φ̃k = eφk/Ti. An integral over the poloidal variation of Sk(t) should also be included, but has

been omitted for notational simplicity. The ensemble average of |φk|2 (related to the shear decorrelation

of the ITG turbulence) is

〈
|φ̃k|2

〉
=

∫ t

0

dt′
∫ t

0

dt′′ K(t− t′)K(t− t′′) 〈Sk(t′)Sk(t′′)〉 (66)

Assuming the source is statistically stationary, 〈Sk(t′)Sk(t′′)〉 is a function of |t′ − t′′| only; we assume

it is nonzero only for |t′ − t′′| <∼ τc, where τc is the autocorrelation time of the random source. We are

only interested in times tÀ τc, so

〈
|φ̃k|2

〉
'
∫ t

0

dt′ K2(t′)

∫ τc

−τc
dτ 〈Sk(0)Sk(τ )〉 ' 2τc

〈
|Sk|2

〉 ∫ t

0

dt′ K2(t′) (67)
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     For tÀ ωb, our result may be used to obtain〈
|φ̃k|2

〉
' 2τc

〈
|Sk|2

〉
t (68)

showing that the mean square potential fluctuation grows linearly with time. It would eventually saturate,

of course, but only after a collision time.
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10. Random Walk of the Radial Electric Field

The mean square electric field resulting from the nonlinear ITG source can be understood as follows.

For the axisymmetric part of the radial electric field,

∂Er

∂t
= −4π(jL + jNL) (69)

where jNL is the nonlinear current from ITG turbulence. The linear current jL consists only of polarization

current, since there is no dissipation:

jL =
(ε− 1)

4π

∂Er

∂t
(70)

and only changes the effective inertia:

∂Er

∂t
= −

4π

ε
jNL (71)

This equation is thus like the equation for the velocity of a Brownian particle, a dust particle subject

to random accelerations from impacts by gas molecules. In spite of the high frequency nature of these

impacts, the mean square velocity increases linearly with time, in the absence of dissipation.

The mean square electric field is thus〈
E2
r

〉
=

(
4π

ε

)2 ∫ t

0

dt′
∫ τc

−τc
dτ 〈jNL(0)jNL(τ )〉 (72)

that is, linearly increasing with time, in the absence of collisions.

22
QTYUIOP



   

11. Discussion

In order to determine poloidal rotation, it is in principle also necessary to calculate the buildup of

parallel flow. However, since toroidal angular momentum is conserved, the contribution of parallel flow to

poloidal rotation may be neglected. A related problem is the collisionless decay of an initially poloidally

rotating plasma, obtained from the Laplace transform of Eq.(27), with the source now related to initial

values. Although the exact value of the rotation is sensitive to these initial details, it is clear from our

solution that transit time damping of poloidal rotation does not occur.

The authors of Ref. 1,2 argue8 that since gyrofluid theory predicts roughly correctly the short (transit

time) damping of poloidal rotation, the response to the rapidly fluctuating ITG drive will damp quickly.

Our results show this not to be the case. A long term buildup should occur, which might be difficult

to simulate numerically. It should be limited only by collisions or, at high turbulence levels, by nonlinear

effects. More recently, these authors have pointed out9 that their simulations do show a nonzero rotation

remaining after an initially damped transient, which may be consistent with our results.

It is also of interest that poloidally varying sources should have much stronger coupling to the un-

damped 0,0 modes kinetically than would be expected from a fluid theory since trapped ions only average

over a limited poloidal distance.

We are far from understanding how important these effects are, but in the absence of collisions

or nonlinear damping, they must strongly reduce the ITG turbulence level. Any “first principles” theory

should be expected to treat the linear damping accurately in view of its importance in determining saturated

amplitudes. We conclude that gyrofluid simulations are likely to overestimate poloidal rotation damping
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  and hence underestimate the stabilizing effects of the m=n=0 radial modes on the amplitude of ITG

turbulence, and therefore overestimate the transport from ITG turbulence.

24
QTYUIOP



   

References

1. M.A. Beer, Ph.D. thesis, Princeton University, 1995.

2. G.W. Hammett, M.A. Beer, W. Dorland, S.C. Cowley, S.A. Smith,

Plasma Phys. Control. Fusion 35, 973 (1993).

3. R.E. Waltz, G.D. Kerbel, J. Milovich, Phys. Plasmas 1, 2229, (1994).

4. J. Glanz, Science 274, 1600 (1996).

5. A.B. Mikhailovskii, V.S. Tsypin, Sov. J. Plasma Phys. 9, 91 (1983).

6. M.N. Rosenbluth, F.L. Hinton, Nucl. Fusion 36, 55 (1996).

7. K.C. Shaing, S.P. Hirshman, Phys. Fluids B 1, 705 (1989).

8. M.A. Beer, private communication.

9. G.W. Hammett, M.A. Beer, private communication.

25
QTYUIOP


