NIMROD

FROM THE CUSTOMER'S PERSPECTIVE

MING CHU

General Atomics

Nimrod Project Review Meeting July 21 – 22, 1997

Work supported by the U.S. Department of Energy under Grant DE-FG03-95ER54309 and Contract DE-AC03-89ER51114

OUTLINE

- I. Summary of β (MHD) Research
 - 1. β Limit is Determined by Ideal MHD
 - α . Troyon Scaling Law Verified
 - β . Dependence on Global Profile
 - 2. Nonideal MHD Modes Observed at the β Limit
 - Plasma Rotation and Kinetic Effects Important
 - α. Resistive Plasma Modes
 - **β.** Resistive Wall Modes
 - 3. β Limit Dynamics Depend on 3-D Effects
 - α . Nonlinear Free Boundary Modes
 - Vertical Displacement, External Kinks
 - **β.** Nonlinear Development of Magnetic Field

OUTLINE (Continued)

- II. Challenges in MHD for ITER and Large Tokamaks
 - 1. β Limits of Steady-State Tokamaks
 - 2. Disruption Dynamics
 - 3. More 3-D MHD
- III. Survey of Existent (Nonlinear) MHD Codes
- IV. Desirable Features of NIMROD
- V. Validation Issues
 - 1. Internal Consistency
 - 2. Check with Known Linear Codes
 - 3. Check with Other Nonlinear Codes
 - α . Scenario Development
 - β . Quantitative Comparison

IDEAL MHD THEORY PREDICTS A SIMPLE BETA LIMIT SCALING

NUMERICAL CALCULATIONS (1982–1984)

$$-\beta(\text{max}) \propto \frac{I(\text{MA})}{a(\text{m}) \ B(\text{T})} \ \text{"Troyon scaling."} \qquad \text{Define } \beta_{\text{N}} = \frac{\beta(\%)}{I/aB}$$

- βν(max) = 2.8 3.2 Ideal n = 1 kink mode (Troyon, Tuda).
- βν(max) = 3.7 4.4 Ideal n = ∞ ballooning (Sykes, Bernard, Tuda).

EXPERIMENTS:

- β_N (max) ≈ 3.5 "Standard."
- β_N(max) ≤ 6 With profile modification.

ANALYTIC CALCULATIONS:

- β(max) = $28\frac{\varepsilon}{q}$ = $5.6\frac{l}{aB}$ Troyon scaling derived for simplified profiles (Wesson).
- High-n and low-n limits become the same for q >> 1.
 Asymptotic scaling (Ramos).

EXPERIMENTS CONFIRM BETA LIMIT SCALING

$$\beta$$
N(max) = 3.5 \pm 0.5

I/aB is limited by current-driven kink instabilities at $q\approx 2$.

BETA LIMIT INCREASES WITH OPTIMIZATION OF PROFILES

- Theoretical calculations predict
 n = 1 kink stability improves
 with broad p(r) and peaked J(r)
 (high ℓi).
- High \(\ell\) i increases magnetic shear near the plasma edge, improves stability for larger edge pressure gradient.
- Experimentally confirmed in DIII-D, TFTR, JET, JT-60U.

Courtesy F.I. Strait "Stability of High R Tokamak Plasmas"

NONIDEAL MHD MODES OBSERVED AT THE β LIMIT PLASMA ROTATION AND KINETIC EFFECTS IMPORTANT

- Resistive Plasma Modes
- Locked Modes
- Sawtooth
- Edge Localized Modes (ELMs)
- Resistive Wall Modes

DISRUPTION AT HIGH β SHOWS STABILIZING EFFECT OF ROTATION

- Rotating m/n = 2/1 locks after a sawtooth, then grows to disruption.
- Consistent with stabilization by a resistive wall:
 - 2/1 mode is saturated while $\omega_{rot} \tau_{w} >> 1$
 - 2/1 mode grows after it stops rotating, $\gamma \leq \tau_w^{-1}$

THE CRITICAL m=2, n=1 RELATIVE ERROR FIELD FOR A LOCKED MODE DECREASES AS THE β LIMIT IS APPROACHED. THE INHERENT ERROR FIELD DUE TO F-COILS IS ALSO SHOWN

- Error fields can
 - Reduce β limit
 - Decrease reliability
 - Increase disruptivity

COLLAPSE AT HIGH β_N SHOWS IMPORTANCE OF ROTATION

 m/n = 3/1 mode becomes unstable when q = 3 surface ceases to rotate

 3/1 mode has predicted features of "Resistive Wall Mode"

[1] E.J. Strait et al., Phys. Rev. Lett. 74 (1995) 2483; [2] T.S. Taylor et al., Phys. Plasmas 2 (1995) 2390.

β LIMIT DYNAMICS DEPEND ON 3-D EFFECTS

- α . Nonlinear free boundary modes
 - Vertical displacement
 - External kinks

- β . Nonlinear development of magnetic field
 - Island topology
 - Field line stochasticity

CHALLENGES IN β LIMITS OF STEADY-STATE TOKAMAKS MHD FOR ITER AND LARGE TOKAMAKS

- Steady state equilibrium profiles
- Advanced tokamak equilibrium profiles
- Resistive wall boundary conditions (smart wall, rotating wall)
- Neoclassical resistive MHD
- Effect of energetic particles

DISRUPTION DYNAMICS

- Vertical displacement halo currents
- Avoidance of locked modes by rotation, error field control, and plasma profile control?
- Identification of disruption precursors
- Plasma dynamics during a disruption: heat, particle, and flux transport, and effect on production of energetic particles
- Disruption amelioration scenarios

MORE 3-D MHD

- 1. Bootstrap current phenomena slow compared to collision frequencies
 - Development of 3-D neoclassical MHD islands
 - Bootstrap current associated with H–mode transport barrier gradients
 - Extent and geometry of ELMs (energy goes to inside divertor plate!!)
 - Separatrix geometry leads to avalanche (self-organized critically)
 - Instability → magnetic stochasticity → parallel heat loss → big ∇P
 Instability
 - Feedback, smart walls; fast particles
- 2. Effect of plasma rotation and resistive walls on evolution pressure-driven resistive wall modes
 - High-bootstrap-fraction, "advanced" discharges rely on walls for stabilization of ideal MHD kinks (low-n) modes
- 3. Error field criteria (possibly neoclassical)
- 4. Sawteeth reconnection (deviations from Kadomtsev)

GENERAL ATOMICS

DESIRABLE FEATURES OF NIMROD

* Two Fluid Formulation

* Readily Available

* User Friendly

* Easy to Maintain

* Fast Turnaround

CHARACTERISTICS OF MHD CODES

	MH3D	NFTC	MARS	FAR	XTOR	PIES	ARES	CTD	NIMROD
N.L. Res. MHD	Х	Х		Х	Х	X		Х	Х
Free Boundary N.L.									?
Neoclassical Tearing				Χ		Х			Х
Scrape-off Layer									?
Resistive Wall	Х	Х	Х				Х	Χ	Х
q < 1	Х	Х	Х	Χ	Х		X	Χ	Х
Two Fluid	Х							Χ	Х
Rotation		Х	Х					Χ	Х
Predict Diagnostics	Х								Х
Fast Particles	Х								?
Radial Element	General	F.D.	F.E.	F.D.	F.D.	F.D.	F.D.	F.D.	General
Fourier in Poloidal	Х	Х	Х	Χ	Х	Χ	Χ	Χ	novel
Fourier in Toroidal	Х	X	Χ	Χ	Χ	Х	X	X	Χ
Linear Regime	q. Imp	s. Imp	eig.	Imp.	s. Imp		eig.	s. Imp	General
Nonlinear Regime	q. Imp	s. Imp	_	exp.	s. Imp	iter.		s. Imp	General

VALIDATION ISSUES

- 1. Internal self-consistency of the code
- 2. Check with known linear codes
 - GATO
 - DCON
 - MARS
- 3. Check with known nonlinear codes
 - MH3D
 - XTOR
 - CTD
 - NEOFAR
 - α . Scenario development
 - Halo current
 - Disruption
 - β . Quantitative comparison
 - Nonlinear stability boundary

