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Growth Rate of Knock-on Runaway Electron Genera-
tion in Tokamaks1  S.C. CHIU, V.S. CHAN, General Atomics,
M.N. ROSENBLUTH, ITER JCT, San Diego, R.W. HARVEY,
CompX — The ability to tolerate disruptions is an important issue
for high current tokamaks. To minimize the electro-mechanical
stresses that can be produced during current quench in a
disruption, it has been proposed to inject killer pellets to quench the
plasma thermally and thus allow a rapid current decay.  A serious
concern is that a high electric field will develop which could produce
long-lived runaway electrons.  Specifically, knock-on collisions can
cause an avalanche of runaways. The key quantities insuch an
event are the growth rates of the avalanche and the energy
spectrum of the runaways.  Previous works2,3 have used the
approximation that the runaway  distribution generating the knock-
ons have zero pitch angle when calculating the knock-on source.
Here, we abandon this approximation and use the actual electron
distribution to calculate the knock-on source.  Using the bounce-
averaged Fokker-Planck code CQL3D, the growth rates and energy
spectrum of runaways are calculated and compared with previous
results.

1Work supported by U.S. DOE Grant DE-FG03-95ER54309.
2M.N. Rosenbluth, A. Putvinski, submitted to Nuclear Fusion (1997).
3S.C. Chiu et al., oral talk, Sherwood Theory Conference, Madison,
 Wisc. (1997).
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MOTIVATION

● Injection of ‘killer pellet’ to induce rapid current decay
is thought to be effective in mitigating a vertical
displacement event resulting from a disruption.

● Rapid cooling and increase of     Zeff  cause rapid electric
field buildup and runaway generation.

● Existing traces of energetic electrons can knock out bulk
electrons to cause an avalanche.

● A crucial quantity in modeling of knock-on avalanche
of runaways is the growth rate.  Previous calculations
of avalanche growth rates used a zero pitch-angle
approximation of the runaway distribution when
calculating the knock-on source.  However, the
distribution for the lower energy runaways is less
peaked around zero pitch angle, and contribution in
this lower energy range to knock-on source is large.

● Here we abandon the zero pitch-angle approximation
and use the actual electron distribution to check the
accuracy of previous calculations.
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OUTLINE

(1) Introduction.

(2) Description of simulation model and an analytic
expression of growth rate.

(3) Comparison of growth rates using general source
function and those using approximate source function
which assumes primary electrons have zero pitch-angle.

(4) Summary and conclusions.
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SUMMARY OF RESULTS

● Growth rates are insensitive to energy of primary
electrons.

● Growth rates with general source function and those
with source function using zero pitch-angle primary
distribution agree very well.

● An analytic expression similar to the Rosenbluth-
Putvinski expression gives very accurate growth rates.
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INTRODUCTION

W

W1

W

ΘW′1
W′1

      

r
w =

r
u
c

, γ 2 = 1+w 2





(a) A high energy electon of momentum       
r

′w1 (primary
electron) is scattered to momentum       

r
w1 knocking out a

bulk electron to momentum     
r

w  (secondary electron).

(b) Locus of momentum vector of the secondary electron
falls on an ellipse:

    

w⊥
2

2( ′γ 1 − 1)
+

w||

′γ 1 − (1/ 2 ′γ 1)
− 1

2










2

= 1
4

(c) Pre-existing high energy electrons can knock out bulk
electrons to runaway energies which are accelerated by
electric field and knock out more electrons and cause a
runaway avalanche.
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Runaways Saturate at Around E/Ecr = 1
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SIMULATION MODEL
AND ANALYTIC EXPRESSION

(A) Description of Simulation Model:

Scattering rate given by Moller cross-section

    

dσ
dγ

= 2πr0
2 Σ (γ , ′γ 1)
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Note:    
    

lim
′w1>>w

∑ (γ , ′γ 1) = ∑(γ ,∞) = 1
(γ − 1)2 ;

this limit is reached quickly.

Let   (Θ ,Φ ) be the scattering angle and orientation of the
scattering plane.  Then the secondary and primary pitch
angles are related by
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  cosθ = cosΘ cos ′θ1 − sinΘ sin ′θ1 cosΦ

The general source function is given by     S(w ,θ ),

      
S(w ,θ )δξδφ = ncr0

2 ′w1
wγ ′γ 1

Σ (γ , ′γ 1)f (
r

w1,t ) ′w1
2dw1d ′ξ1d ′φ1dΦ

When       f (
r

w1,t ) is sharply peaked around   ′θ1 ≈ 0, one has
the reduced source function:

    Sr (w ,θ ) = ncr0
2f ( ′w||1,t ) ′w1

2S0 (γ , ′γ 1 )

where

    
S0 (γ , ′γ 1 ) = Σ ( ′γ 1 − 1)(γ + 1)

w 2 ′w1 γ

Note: The function     S0 is only weakly dependent on the
primary energy
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Source Depends Weakly on Primary Energy
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Bounce averaged Fokker-Planck equation:

    

∂f
∂t

− eE
mc

∂f
∂w||

= C(f ) + S(w ,θ )

solved by CQL3D.  For high energies, only drag and
pitch angle scattering are important.  Then the collision
operator reduces to

    
C (f ) ≈ eEc

mc
ζ (λ )
w 2

∂
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γ 2f + 2(Z − 1)γ
w 3
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where

      
b(l) = B(l)

Bmax
,

      
λ = w⊥

2

w 2b(l)
,

      
ζ (λ ) = dl

L∫
1

1−λb(l)
,

      
η(λ ) = 1

b(l)
− λ .

The critical electric field   Ec  is defined as
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Ec = 4π ne3 lnλ

mc2 ≈ 0.102n14 (V / m)

For     E ≤ Ec, there can be no runaways.

(B) Analytical expression of growth rate:

    
γ ra = eE

mc lnΛ
Ê Ê − 1− 0.2(Z + 1)
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where     ̂E = E / Ec, and the trapping effect is in

    fp = 1− 1.46 ε .

Growth rate decreases with increasing   Z .
For     Z >> Ê >> 1,

    
γ ra → eEÊ

mc lnΛ (Z + 1)

fp

3
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REDUCED
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GENERAL
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Growth Rate Depends Weakly
on Primary Energy
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Trapping Decrement of Growth Rate
(E/Ecr = 15)
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Growth Rates Decrease with Density
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SUMMARY AND CONCLUSIONS

(l) Growth rates of knock-on avalanche are found to be
rather insensitive to the primary energy.

(2) Growth rates using the general source function are
compared with those using the reduced source function.
It was found that the reduced source function gives
growth rates with remarkable accuracy.  The latter is
computationally about twenty times more efficient.

(3) An analytic expression which is modified from an earlier
expression was found to give very accurate growth
rates.


