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Slow Liner Fusion

M.J. Schaffer
General Atomics, P.O. Box 85608, San Diego, California  92186-5608

Summary

“Slow” liner fusion (~10 ms compression time) implosions are nondestructive and make

repetitive (~1 Hz) pulsed liner fusion reactors possible. This paper summarizes a General

Atomics physics-based fusion reactor study [1,2] that showed slow liner feasibility, even

with conservative open-line axial magnetic field confinement and Bohm radial transport.

Background

Slow liner fusion (~10 ms compression rundown time) was pioneered by A.E. Robson

and colleagues as the LINUS concept [3] at the U.S. Naval Research Laboratory, where

its potentially nondestructive pulses were seen as more likely to lead to a compact power

reactor than “fast” liner fusion (<<1 ms rundown). In the slow liner concept, a driving

system (“driver block” in the figure) implodes a thick liquid liner to compress a

magnetized plasma to fusion ignition, which occurs near peak pressure during the brief

liner “dwell” phase. The driver might use high pressure gas acting on pistons in various

geometries. The liner, which serves as a renewable first wall and blanket, tolerates larger
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fusion power and neutron fluxes than conventional fusion reactors. The high neutron flux

capability led the Electric Power Research Institute to sponsor the “Background Study of

Liner Fusion Systems for Transmuting Fission Reactor Wastes” [1] at General Atomics.
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Power producing liner reactors were studied by General Atomics [2]. The physics of

high–β and wall confined plasmas compressed by thick, compressible, rotating, liquid

liners was studied in detail, in order to assess reactor performance.

Slow Liner Fusion Power Reactor

The conducting liner is a vortex of liquid metal rotating at a speed chosen to stabilize the

Rayleigh–Taylor instability during liner deceleration and turnaround. The liquid liner is

contained within a massive structure that includes, among other things, the reversible

liner driver and heat removal means. The requirements of nondestructive pressures and

repetitive liner driver technologies sets liner parameters:  initial vortex inner radius ~1 m,

compressed radius ~0.05 m, compression time ~10 ms,  and fusion burn time ~100 µs. In

the simplest scaling, the energy to compress the liner and plasma grows as QL
2  and the

fusion energy per pulse as QL
3 , where QL  = (fusion energy per pulse)÷(liner energy per

pulse). Thus, high QL  liner reactors are large. Typically QL  is made < 1, but then the

compression energy must be recovered with high efficiency by a reversible driver. Since

liner compressibility stores a major fraction of the liner energy, and the plasma high

pressure peak duration is shorter than a sound transit time across the liner, the liner

compression was studied numerically using a high pressure equation of state. High

energy transfer efficiency, defined as (compressed plasma energy)÷(driving energy)

requires high ρc2 , low compressibility and a radially thin liner, where ρ and c are liner

mass density and sound speed, respectively. Most liquids are too compressible.

The liner is made of layered immiscible liquids to combine favorable material

properties. The plasma-facing layer needs high electrical conductivity, low vapor pressure

and low Z, while the bulk liner must be denser and breed tritium. The inner and outer

layers might be liquid Al and Pb-Li alloy, respectively. While relatively immiscible, they

can be further separated by a molten halide salt layer, such as the ternary eutectic .54 LiF-

.28MgF2-.18SrF2 (MP = 646˚C), which is chemically compatible with Al, Pb and Li.

The liner containment vessel has end holes on axis, both for injection of uncom-

pressed plasma and because solid end walls would be destroyed by the peak pressure. The

liner-compatible, high–β wall-confined plasma with an open-line axial magnetic field

was studied in greatest detail. Plasma and impurity transport and radiation were studied

by a 11/2–D code [4] implementing the full Braginskii classical multispecies transport.

Axial free streaming loss is reduced by inertial end tamping by dense, cold plasma. End

loss is then dominated by the electron thermal conduction, q Te e|| ~ /7 2, which is only

important near burn temperatures. A major fraction of the end loss is dissipated in just a
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few cm of the plug [5], vaporizing part of the nearby liner and usefully adding end

tamping mass. Radial transport is expected to be classical, based on θ–pinch experience,

but Bohm transport is tolerable [4]. Since compression of magnetic flux is wasteful,

operation is with β > 1 at peak compression and β >> 10 initially (wall confinement).

Cooling at the wall decreases plasma pressure there and lets plasma and magnetic flux

convect radially outward until a β < 1 boundary layer is formed [6,7]. In order to avoid

excessive radial plasma transport during the slow compression, the low–β boundary must

be formed by injecting initial plasma on axis and allowing it to displace magnetic flux to

the wall. Cold liner material vaporized by bremsstrahlung mingles with boundary layer

plasma, but the classical thermal force acts radially outward and confines impurities to

the boundary layer.

A reactor scoping code [1,2] was used. An example reactor is:  compressed radius =

0.04 m,  volume compression ratio = 400,  T = 6 keV,  β = 6,  liner length = 90 m,  fusion

energy per pulse = 7.65 Gj,  injected plasma energy = 0.235 Gj,  QL  = 0.63,  ηnet  = 0.26

= (power for sale)÷(nuclear power). The liner was driven by He gas at 680 bar. The initial

plasma might be injected by a deflagration plasma source [8], which produces a directed,

high power plasma stream. Heat removal and vacuum pumping concepts are discussed in

[1]. Despite the open confinement, the liner length is not much greater than the projected

ITER plasma circumference of ~50 m.

Slow liner fusion reactors tolerate very conservative physics assumptions, eg. Bohm

transport and open magnetic lines, but the engineering is challenging. They become more

attractive if they can operate with a magnetically closed plasma, such as an FRC [1–3].
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