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Drift-Kinetic Simulations of Neoclassical
Transport

E.A. Belli and J. Candy

General Atomics, P.O. Box 85608, San Diego, CA 92186-5608, USA

Abstract. We present results from numerical studies of neoclassical transport for multi-species
plasmas. The code, NEO, provides a first-principles based calculation of the neoclassical transport
coefficients directly from solution of the distribution function by solving a hierarchy of equations
derived by expanding the fundamental drift-kinetic equation in powers ofρ∗i, the ratio of the ion
gyroradius to system size. It extends previous studies by including the self-consistent coupling of
electrons and multiple ion species and strong toroidal rotation effects. Systematic calculations of
the second-order particle and energy fluxes and first-order plasma flows and bootstrap current and
comparisons with existing theories are given for multi-species plasmas. The ambipolar relation
∑a zaΓa = 0, which can only be maintained with complete cross-speciescollisional coupling, is
confirmed. The effects of plasma shaping are also explored.

Keywords: neoclassical, transport, simulation
PACS: 52.25.Dg,52.25.Fi, 52.65.-y

1. INTRODUCTION

Accurate simulation of turbulence and transport in tokamakedge plasmas requires
a full- f kinetic formulation in which equilibrium and fluctuation-scale dynamics are
merged. While neoclassical transport is generally subdominant to anomalous transport
by at least one order of magnitude in the core, neoclassical dynamics is believed to be
important in explaining enhanced edge confinement phenomena, such as the formation
of transport barriers in the H-mode edge due toE × B shear stabilization [1]. Thus,
kinetic simulations incorporating such effects are of interest.

For this purpose, we have developed a new code NEO, which provides a direct nu-
merical solution of the drift-kinetic equation (DKE) basedon the drift-kinetic operator
of Hazeltine [2], including coupling to the Poisson equation. While analytic estimates
for neoclassical transport coefficients were first developed in the 1970s, they were based
on a hierarchy of approximations, such as simplified geometry, limited collisionality
regimes, small electron-to-ion mass ratio, etc. (For more details, see the review articles
by Hinton and Hazeltine [3] and Hirshman and Sigmar [4].) Later extensions include the
well-known Chang-Hinton formula for the ion energy flux [5], which allows for experi-
mentally relevant values of collisionality and aspect ratio for circular plasmas, the analy-
sis of Hirshman et al. [6, 7], which studies the transport of impurities, and extensions of
the drift-kinetic formulation to include strong rotation effects by Hinton and Wong [8]
and Catto et al. [9]. However, none of the analytic formulae can accurately treat plasma
shaping or self-consistent interspecies coupling over allcollisionality regimes. While
some improvement over the analytic formulae is possible with the NCLASS code [10],
which is itself based on a combination of moment methods and analytic formulae for



circular plasmas, the correspondance of NCLASS results to direct solution of the DKE
has not been established. Our approach improves on existingcalculations by solving a
hierarchy of equations derived using the traditional expansion procedure in powers of
ρ∗i, the ratio of the ion gyroradius to system size, and thus represents a first-principles
approach. Our final result is in some sense an exact solution for the standard second-
order neoclassical fluxes unrestricted by orderings in aspect ratio, collision frequency,
etc.

In this paper, we summarize NEO simulation results of neoclassical transport for
multi-species plasmas. A more detailed account of results in the diamagnetic ordering
limit appears in Ref. [11]. The remainder of this paper is organized as follows. In
Sec. 2, we describe the basic simulation model and numericalmethods used in NEO. In
Sec. 3, the simulation results are presented, including comparisons of the second-order
neoclassical fluxes and first-order bootstrap current with analytic theory. Studies of the
effects of heavy impurity ions, strong toroidal rotation, and shaping are also presented.
Finally, a summary of the results is given in Sec. 4.

2. NEOCLASSICAL SIMULATION MODEL

In NEO, we solve a hierarchy of equations based on expanding the fundamental
drift-kinetic equation in powers ofρ∗i = ρi/a, the ratio of the ion gyroradiusρi

.
=

(c
√

miT0i)/(zieB) to the system size. Thus the distribution function for each species
a is expanded as

fa = f0a + f1a + f2a + . . . (1)

The equations are generalized to include the effects of strong rotation based on the
derivation by Hinton and Wong [8], who extended the originalneoclassical theory [2],
which assumes the diamagnetic ordering, to allow for the ratio of the species flow to the
thermal speed to be of arbitrary size. Thus, the leading-order electric field is one order
larger than in the diamagnetic drift ordering, as required to maintain the asumption of
slow temporal change∂∂ t ∼ ρ2

∗iΩci (whereΩci = zieB/(mic) is the cyclotron frequency)
in the presence of a large perpendicular flow, i.e.

Φ = Φ−1 +Φ0 +Φ1 +Φ2 + . . . . (2)

Hinton and Wong have shown thatΦ−1 is a flux function and that the zeroth-order flow
speed must be purely toroidal and species independent:~V0a = ωR2∇ϕ such that the
angular rotation frequency is related toΦ−1 by ω(ψ) = −dΦ−1

dψ , whereψ, the poloidal
flux divided by 2π, is the flux surface label. Here we write the equations in the rotating
frame, adopting the velocity coordinatesE = v2/2+λa(θ)v2

ta andµ = v2
⊥/(2B), wherev

is the rotating frame speed,λa(θ)
.
= (zae/T0a)Φ̃0(θ)−ω2R(θ)2/(2v2

ta), andΦ̃0(ψ,θ) is
the poloidally-varying part of the potential,Φ̃0(ψ,θ) = Φ0(ψ,θ)−〈Φ0〉. The equations
reduce to the usual diamagnetic ordering in the limitΦ−1 → 0.



2.1. Equilibrium equations

TheO(1) equilibrium equation is

v‖ ·∇ f0a = Ca,a ( f0a, f0a) . (3)

Thus, the zeroth-order distribution function is Maxwellian in the rotating frame with the
form

f0a =
n0a

(2πT0a/ma)
3/2

e−v2/2v2
ta (4)

wherevta =
√

T0a/ma is the thermal speed. The temperature,T0a = T0a(ψ), is a flux
function but the density,n0a(ψ,θ) = N0a(ψ)exp(−λ (θ)), is not. The poloidal potential
Φ̃0(ψ,θ) is determined by theO(1) Poisson equation, which reduces to the usual quasi-
neutrality relation

∑
a

za en0a = 0 . (5)

For a general multi-species plasma, we use Newton’s method to solve for the complete
equilibrium densities, given as input the values of the densities at the outboard midplane.

2.2. First-order equations

TheO(ρ∗i) contribution to the drift-kinetic equation is

v‖ ·∇g1a −∑bCL
ab = − f0a

(

d lnN0a
dψ + zae

T0a

d〈Φ0〉
dψ

)

v‖ ·∇α1

− f0a
d lnT0a

dψ v‖ ·∇
[

α1

(

E
v2

ta
− 3

2

)]

− f0a
d lnω
dψ v‖ ·∇α2 , (6)

whereg1a = f1a + f0a
zae
T0a

Φ1 is the nonadiabatic distribution function,CL
ab is the linearized

collision operator, and the arguments of the RHS source term derivatives are given by

α1 =
mac
zae

(

Iv‖

B
+ωR2

)

, α2 =
macω
zae2v2

ta

[

(

Iv‖

B
+ωR2

)2

+ µ
|∇ψ|2

B

]

. (7)

The first-order potential can obtained fromg1a via theO(ρ∗i) Poisson equation

∑
a

z2
ae2n0a

T0a
Φ1 = ∑

a
zae

∫

d 3vg1a . (8)

The corresponding second-order neoclassical particle andenergy fluxes are given by

Γ2a =

〈

∫

d 3vv‖b̂ ·∇α1g1a

〉

, Q2a =

〈

∫

d 3vT0av‖b̂ ·∇
(

α1
E

v2
ta

+α2

)

g1a

〉

. (9)



The first-order bootstrap current is given by

〈

j‖B
〉

= ∑
a

zae
〈

n0aU‖1a
B
〉

, where U‖1a
=

ωI
B

+
1

n0a

∫

d 3vv‖g1a . (10)

The numerical approach used in NEO is sketched in Ref. [11] andwill be described in
detail in a future publication. Briefly, we use a mixture of spectral and finite-difference
approximations. We adopt the kinetic energyεa = v2/(2v2

ta) and cosine of the pitch
angleξ = v‖/v as the velocity space coordinates, since the collision operator, described
in the next section, is aligned in these coordinates. We use basis function expansions of
Chebyshev polynomials in energy and Legendre polynomials inξ . A mesh is used in the
spatial variablesr andθ . The resulting matrix system is solved with a standard sparse
solver.

2.3. Model forms of the linearized collision operator

In this paper, we consider three model collision operators,described as follows in
descending order of sophistication. The full Hirshman-Sigmar operator [12] (HS) is ob-
tained by a sophisticated expansion and renormalization ofthe linearized Fokker-Planck
operator. The operator conserves number, momentum, energy, is self-adjoint and has an
H-theorem. It contains a pitch-angle scattering Lorentz operator and an energy diffu-
sion term as well as models for the deceleration effect arising from dynamic friction and
for heating friction effects. The zeroth-order Hirshman-Sigmar operator [6] (HS0) is a
reduced form of the full Hirshman-Sigmar operator which retains just the Lorentz oper-
ator and momentum-restoring contributions. It does include, however, the distinction be-
tween the pitch-angle diffusion frequency and the slowing-down frequency, the latter of
which is known to be important for accurately modeling collisions between species with
similar masses and thus is essential for studies of multi-ion plasmas. Finally, for compar-
ative purposes, we also present results for the Connor model [13], a very simple opera-
tor based on a multi-species extension of the so-called Kovrizhnikh operator [14] which
is useful for analytic work. Similar to the zeroth-order Hirshman-Sigmar operator, the
Connor model also contains just a pitch angle scattering termand a momentum-restoring
term. However, the model does not distinguish between the deflection frequency and the
slowing-down frequency and, rather, the form of the single collision frequency is made
to depend asymmetrically on the relative masses of the colliding particles based on an
asymptotic expansion. The Connor model is valid for Lorentz plasmas, such as pure
plasmas and multi-species plasmas containing only an additional high-z impurity.

We note that the properties of the collision model are important in determining the
neoclassical physics, specifically regarding ambipolarity. It can easily be seen from
the first-order kinetic equation that the plasma maintains ambipolarity ∑a zaΓ2a only
if the general momentum conservation property collision operator

∫

d 3vv‖ ∑bCabg1b is
properly maintained, as is done here.



3. SIMULATION RESULTS

The results presented in this paper are based on the General Atomics standard case
parameters [15]:r/a = 0.5 andR0/a = 3 (inverse aspect ratioε .

= r/R0 = 1/6), q = 2,
a/Lni = a/Lne = 1,a/LTi = a/LTe = 3,T0i = T0e. s-α geometry withα = q2R0dβ/dr = 0
and the diamagnetic limit (ω = 0) are assumed unless otherwise specified. All cases
with kinetic electrons use the true electron mass, and the main ion is always taken to
be deuterium. Scans are performed over a wide range of collision frequency,τ−1

ii
.
=√

2πe4z4
i n0i lnΛ/(m1/2

i T 3/2
0i ). The energy fluxes are given in units of the ion gyroBohm

of energy flux,QGB
.
= n0iT0ivtiρ2

0i/a2, whereρ0i
.
= (c

√
miT0i)/(zieB0).

3.1. Basic assessment of code validity

To establish the physical accuracy of the code results, we perform simulations for
a limited test case consisting of adiabatic electrons, suchthat only Cii is nonzero,
and in the banana regime of collisionality. In these limits,the most accurate analytic
result for the calculation ofQi, given by Taguchi’s theory [16], is valid. In Fig. 1,
we plot the NEO numerical results against Taguchi’s theory as well as theoretical
predictions from Hinton and Hazeltine [3] (HH theory) and Chang and Hinton [5]
(CH theory). The salient result is that the Hirshman-Sigmar collision model accurately
recovers Taguchi’s theory, while the zeroth-order Hirshman-Sigmar collision model and
the Connor collision model both underestimate the heat flux, with the Connor model
results more closely following the Hinton-Hazeltine theory. The Chang-Hinton formula,
which provides finite-ε corrections to the Hinton-Hazeltine theory and is the most
widely used of the theoretical models, is shown to overestimate the transport, by about
22%. Overall, these results not only verify the code but further suggest that an accurate
model for ion-ion collisions, which specifically includes energy diffusion, is potentially
important for modeling experiments. It is also clear from comparing the zeroth-order
Hirshman-Sigmar model with the Connor model that the deceleration effect, represented
by the slowing-down frequencyνS in the Hirshman-Sigmar model, can be significant.

3.2. Results with self-consistent electron dynamics

The second-order particle and energy fluxes computed with NEO are shown in Fig. 2.
Hinton-Hazeltine analytic predictions [3] are also shown.In contrast to the simulations
in Fig. 1, which treated only a single ion species, the present results properly account
for the exact electron-mass corrections due toCie, which are not retained in the theory.
We remark that the simulations dynamically recover ambipolarity, Γi = Γe, accurate
at this numerical resolution to about three significant figures. For this reason, we plot
only Γi. As noted previously, ambipolarity can only be maintained with complete ion-
electron collisional coupling. While the ion particle flux, which arises due to the cross-
species parallel momentum exhange, varies on the electron scale, the ion energy flux
is generallyO(

√

mi/me) larger than the electron energy flux. Comparing the collision
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FIGURE 2. (a) Ion particle flux and (b) ion and electron energy fluxes versus collision rate. NEO results
from all three collision operators are shown, along with theprediction from the Hinton-Hazeltine theory
(HH theory). Since the particle flux is ambipolar to high accuracy, only the ion values are shown.

models themselves in these results, a large variation is generally not found – with the
exception that the full Hirshman-Sigmar model consistently yields a larger energy flux
in all collisionality regimes for both species.

In addition to the particle and energy fluxes, accurate modeling of bootstrap current
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three collision operators are shown, along with predictions from the Hinton-Hazeltine theory (HH theory)
and the Sauter model.

is also of interest. This is shown in Fig. 3a, with the Hinton-Hazeltine theory and the
fits by Sauter et al. [17] shown for comparison. The Sauter model is based on a fitting
formula using the fraction of trapped particles,ν∗i, andzi as parameters. It therefore
includes some finite-aspect-ratio corrections which, as shown, are most significant in
the banana regime. In general, we find that the NEO results forthe bootstrap current lie
between the two theories. Further insight can be achieved byconsidering the variation
of the dimensionless flow coefficientka, defined in terms of the parallel flow by

〈

U‖B
〉

1a
= 〈ω̂a〉 I + ka(r)

cT0aI
zae

d lnT0a

dψ
, (11)

where

ω̂a
.
= −cT0a

zae

[

d lnN0a

dψ
+

d lnT0a

dψ
(1+λa(θ))+

zae
T0a

d 〈Φ0〉
dψ

+
ωR2

v2
ta

dω
dψ

]

. (12)

In the limit of weak rotation,ω̂a is the usual diamagnetic frequency and Eq. (11) be-
comes the usual standard neoclassical relation [21]. As Sauter explains, the ion dimen-
sionless flow coefficientki depends very sensitively on bothε andν∗i and thus the two
effects cannot be decoupled, as is usually done in the analytic theory. Unlike the other
coefficients in the Sauter model, the model forki is based on a modification of the Harris
model [18], which smoothly connects the Hirshman collisionless model and the Hinton-
Hazeltine collisional model. As shown in Fig. 3b, we find withNEO that, with the full
Hirshman-Sigmar model,ki is larger than the Sauter prediction. This is consistent with
the smaller bootstrap current observed in Fig. 3a.



3.3. Impurity dynamics and rotation effects

The effect of heavy-ion impurities on the ion neoclassical transport has also been
studied. For these simulations, we use the standard case parameters and include fully-
stripped carbon impurity ions withzI = 6. The ion-carbon density ratio is specified
through the impurity charge dilution factor,fI

.
= zI(n0I/n0e) and is taken to befI = 0.1.

The impurity equilibrium temperature and temperature gradient scale length are equal
to the main ion values. Scans are performed over a wide range of collision frequency,
with the ion and impurity collision frequencies varied consistently, assuming that the
Coulomb logarithm is species-independent.

Results are shown in Figs. 4 and 5, together with the analytic prediction of Hirshman
and Sigmar [6, 7], which is based on the zeroth-order Hirshman-Sigmar collision model
and interpolates to connect the banana and plateau regime theories. For the particle flux,
shown in Fig. 4, all operators perform well for the electron flux, but for ion and impurity
flux the Connor model performs poorly. This is due to the fact that the Connor operator
does not model the deceleration effect represented by the slowing-down frequency,
which is important for collisions between species with similar masses. The full and
zeroth-order Hirshman-Sigmar operators agree closely except at the highest collision
frequencies, where presumably energy scattering begins todominate. For the energy
flux, shown in Fig. 5, the collision models produce similar trends, although the less
accurate models slightly underpredict the ion energy flux (similar to the pure plasma
case shown in Fig. 2b). Comparing the NEO fluxes with the theory, we ultimately find
that the Hirshman-Sigmar theory gives particle flux ratios so inaccurate as to be useless.
The theory does a better job of predicting the electron and ion energy fluxes, but gives
the wrong sign of the impurity energy flux at moderate to high collision frequency. These
results reflect a general limitation of analytic theories for multi-species plasmas (based
on collisionally-interpolative formulas) due to inadequate modeling of the multitude
of accessible collisional regimes for any givenτ−1

ii considering all of the collisional
species pairs. For this reason, multi-species analytic theories are typically valid only in
the weak-coupling limit, and, overall, for accurate calculation of impurity transport, the
Hirshman-Sigmar formulas should be avoided.

Figures 4d and 5d show the relative effect of strong toroidalrotation. Here we show
the variation of the fluxes with the ion Mach number squared,M2

i
.
= miω2R2

0/(T0e +T0i),
for the case of a single collision frequency in the banana regime. Zero rotation shear is
assumed. Most noticeably, the electrons are least affectedby the rotation, as excepted
since the influence of the centrifugal force is weak due to their small mass. The impurity
fluxes are largely enhanced by the rotation, due to the increase in the effective fraction
of trapped particles. Due to ambipolarity, the magnitude ofthe ion particle flux is also
enhanced, while the ion energy flux, which is generally only weakly influenced by the
collision friction with the impurities, is slightly suppressed.
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from the Hirshman-Sigmar interpolatory formula (HS theory). Also shown (d) is the variation of the
particle fluxes with Mach number squared in the banana regimeusing the HS collision operator in NEO.

3.4. Plasma Shape

The effect of cross-sectional shaping on the neoclassical transport has also been
studied using the Miller local equilibrium model [19]. In the simulation we assume
electrons are adiabatic and use the full Hirshman-Sigmar collision operator. For these
results, we generalize the definition of the normalizing gyroBohm unit of energy flux
asQGB

.
= n0iT0ivtiρ2

i,unit/a2, whereρunit
.
= (c

√
miT0i)/(zieBunit) is the unit gyroradius.
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HereBunit(r) = (q/r)dψ/dr is the effective magnetic field strength [20].
Figure 6 shows the effect of two significant shaping parameters – triangularity(δ )

and elongation(κ) – on the ion energy flux. For comparison, we show both the standard
Chang-Hinton (CH theory) results for the ion energy flux, as well as a modified formula
(M-CH formula) which evaluates the magnetic field averages using the Miller B(θ)
rather than the explicit analytic form. This modification accounts for the lesser effect of
shaping which is to modify the geometrical factors which appear in the kinetic equation.
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The primary effect of shaping is to modifyBunit from the on-axis value, e.g. the dominant
Bunit scaling is generallyBunit ∼ κB0. Thus, it is crucial that the analytic formulas
account for this overall shift in the effective magnetic field strength. This is done via
evaluation of the gyroradius usingBunit, and not the on-axis field, in both the standard
and the modified formulas. Here we are interested in comparing only the qualitative
trends of NEO and M-CH with shaping, as we have previously established in Sec. 3.1
that the Chang-Hinton model overestimates the ion energy flux. In the case ofκ andδ ,
there is explicit parameteric only in the M-CH model. Here, the model is correct in the
case ofδ , as shown in Fig. 6a, but gives the wrong trend forκ, as shown in Fig. 6b. This
result suggests that the use of the exact magnetic field in theChang-Hinton formula does
not accurately model the scaling with shaping.

4. SUMMARY

A new Eulerian code, NEO, has been developed for numerical studies of neoclassical
transport. NEO solves a hierarchy of equations derived by expanding the DKE in powers
of ρ∗i and thus represents a first-principles calculation of the neoclassical transport
coefficients for general plasma shape. NEO extends previousnumerical studies by
including the self-consistent coupling of electrons and multiple ion species and strong
toroidal rotation.

For benchmarking, comparisons of the second-order transport coefficients with vari-
ous analytic theories have been presented. Three model collision operators were com-
pared: the full Hirshman-Sigmar operator, the zeroth-order Hirshman-Sigmar operator,
and the Connor model. For multi-species plasmas, the ambipolar relation, which requires



complete cross-species collisional coupling, was confirmed. With the full Hirshman-
Sigmar operator, we have confirmed that the widely-used Chang-Hinton analytic model
overestimates the ion energy flux in the intermediate aspectratio regime, by about 22%
for our simulation parameters. Agreement with Taguchi’s theory, which is the most
accurate theoretical result in the banana regime, was demonstrated. The zeroth-order
Hirshman-Sigmar operator and the Connor model were found to consistently underes-
timate the ion energy flux in all collisionality regimes. A study of heavy-ion impurity
transport showed that the Hirshman-Sigmar interpolatory theory gives a relatively poor
prediction of ion and impurity fluxes. Strong toroidal rotation was found to significantly
enhance the impurity fluxes in the banana regime. Extensive studies of rotation effects
will be studied in future work.

Finally, parameterized studies of the effects of flux-surface shape (triangularity and
elongation) were performed using the Miller local equilibrium model. A simple modi-
fication of the Chang-Hinton theory for shaped plasmas which evaluates the magnetic
field averages using the exact magnetic field was not found to be generally accurate in
predicting the trends of the ion energy flux with shaping paramters. However, it is es-
sential to use the effective magnetic field strengthBunit to compute the gyroradius as it
occurs in the theory to account for the dominant overall shift due to shaping.
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