Advances in the Control and Understanding of Fusion Plasmas in the DIII–D Tokamak

by M. Wade for the DIII–D Team

APS Spring Meeting Jacksonville, FL

April 16, 2007

058-07/MW/jy

The Tokamak is the Most Successful Type of Plasma Confinement Device

- Tokamak experiments have produced significant fusion power
 - 11 MW fusion power in TFTR (1994)
 - 16 MW fusion power in JET (1997)
- ITER the big step toward tokamak fusion will produce up to 500 to 500 MW of fusion power

ITER: The Next Frontier in Fusion Energy Research and a Grand Scientific Challenge for the World Community

- Primary mission is to demonstrate viability of "burning" plasma operation (i.e., primary heating source is from fusion by - products)
- Will provide platform for investigation of key physics phenomena in the burning plasma enviroment
- Status
 - ITER Agreement signed by 7 international partners in Nov. 2006 (United States, European Union, Japan, Russia, China, Korea, India)
 - Currently in final design review stage before construction begins in 2008

 Designed for 500 MW fusion power production for pulse of 300 s

058-07/MW/jy

Key Performance Requirements in Achieving Burning Plasma Conditions

- Good Energy Confinement
 - Reduce Heat Leakage Rate to a Minimum
- High Plasma Pressure
 - Avoid or Control Large-Scale Instabilities
- Shield Chamber Walls from Hot Core Plasma
 - Reduce Focusing of Energy on Small Areas
- DIII–D has demonstrated the ability to achieve all of these requirements simultaneously

DIII–D is Developing the Scientific Foundation for the Success of ITER

of producing plasma conditions expected in future fusion devices

058-07/MW/jv

Electron Collision Rate

Orbit Transit Rate

Collisionality =

DIII-D Experiments Have Demonstrated the Capability to Sustain Stability and Confinement Quality Well In Excess of the Requirements of ITER

Key Performance Requirements in Achieving Burning Plasma Conditions

Good Energy Confinement

- Reduce Heat Leakage Rate to a Minimum
- High Plasma Pressure
 - Avoid or Control Large-Scale Instabilities
- Shield Chamber Walls from Hot Core Plasma
 Reduce Focusing of Energy on Small Areas
- DIII–D has demonstrated the ability to achieve all of these requirements simultaneously

DIII–D Experiments are Confirming Theoretical Picture of Turbulence-Driven Transport

DIII–D Experiments are Confirming Theoretical Picture of Turbulence-Driven Transport

Turbulence Measurements at Different Spatial Scales Show Different Response to Plasma Heating

058-07/MW/jy

Visualization of Core Plasma Turbulence, Now Possible with High Sensitivity Diagnostics

Turbulence Visualization Enables Measurement of Turbulence-Driven Zonal Flows

Energy Transfer Between Zonal Flows and Turbulence Has Been Measured - Consistent with Theory Predictions

• First experimental demonstration of interaction of turbulence and zonal flows

Plasma Rotation Driven By External Torque Input Can Be Used to Control Turbulence

 Example of using plasma control to elucidate key physics issues

Theoretically Predicted Improvement in Transport as Rotational Shear is Increased Confirmed by Experiments

Key Performance Requirements in Achieving Burning Plasma Conditions

- Good Energy Confinement
 - Reduce Heat Leakage Rate to a Minimum
- High Plasma Pressure
 - Avoid or Control Large-Scale Instabilities
- Shield Chamber Walls from Hot Core Plasma
 Reduce Focusing of Energy on Small Areas
- DIII–D has demonstrated the ability to achieve all of these requirements simultaneously

Avoiding or Controlling Large-Scale Instabilities is Essential to Operate at High Pressure

- Edge localized modes (ELMs)
- Fast-Ion Driven Instabilities

Neoclassical Tearing Modes (NTMs) Are Island Structures That Form on Internal Plasma Surfaces

If Uncontrolled, NTM Islands Will Grow and Eventually Cause a Rapid Loss of Plasma Energy ("Disruption")

 Due to need to avoid disruptions, NTMs are a serious risk to ITER achieving optimal performance

Experiments Have Proven Theoretical Expectation that Driving Current At Island Location Will Stabilize NTM

Real-time Tracking of Island Location Required for NTM Suppression

 Optimal location for NTM suppression found by real-time searching and maintained by tracking of q=2 surface using real-time equilibrium reconstructions including MSE (every 6 ms)

Real-time Dynamic Control Utilized to Maintain Precise Alignment of Current Drive with NTM Location

058-07/MW/jy

Resistive Wall Mode Stabilization Relies on Dynamic Control Via Non-Axisymmetric Coils

- Low-n kink instabilities occur at very high plasma pressure
 - Very fast growth time (~10 μ s)
 - Stabilized by perfectly conducting wall

- With finite conductivity wall, instability is weakly damped leading to resistive wall modes
 - Moderate growth time (~10 ms)

- **DIII-D experiments have identified** two methods for RWM stabilization:
 - Plasma rotation (magnitude dependent on n=1 error field)
 - Feedback control using non-axisymmetric coils

Real-time Error Field Correction Enables Sustained Operation Near Absolute Pressure Limit

- Critical Rotation for RWM Stabilization Sensitive to n=1 Error Field
- With n=1 error dynamically controlled, high pressure can be maintained

Even in Cases with High Rotation, Rapid Feedback Control System Required to Respond to Transient Events

Improved Diagnostics Now Allow Detailed Investigation of Fast Particle Driven Instabilities

- Small-scale instabilities driven by fast particle population exist in "gaps" of Alfvén continuum
- Radial extent of instabilities determined by interaction with continuum
 - Not easy to measure with external diagnostics

Improved Diagnostics Now Allow Detailed Investigation of Fast Particle Driven Instabilities

- Small-scale instabilities driven by fast particle population exist in "gaps" of Alfvén continuum
- Radial extent of instabilities determined by interaction with continuum
 - Not easy to measure with external diagnostics
- New fluctuation diagnostics with high spatial resolution allow precise measurement of instabilities

Measured Radial Structure Agrees Extremely Well with Theory Predictions

 Theory predictions based on measured plasma properties with instability strength scaled to match measurement

Measured Radial Structure Agrees Extremely Well with Theory Predictions

Key Performance Requirements in Achieving Burning Plasma Conditions

- Good Energy Confinement
 - Reduce Heat Leakage Rate to a Minimum
- High Plasma Pressure
 - Avoid or Control Large-Scale Instabilities
- Shield Chamber Walls from Hot Core Plasma

 Reduce Focusing of Energy on Small Areas
- DIII–D has demonstrated the ability to achieve all of these requirements simultaneously

High Confinement Regimes (known as H-mode) Are Generally Accompanied by Edge Instabilities (ELMs)

- Plasma Energy Builds Up Until an Instability Causes a Rapid Loss of Energy
 - In this case, 10% of plasma
 energy is lost in 100 μs
 - High time resolution measurements
 indicate that the instability only impacts the edge plasma
 - Known as an Edge Localized Mode (or ELM)

High Spatial Resolution Measurements Show that the ELM-induced Perturbation is Localized Near the Edge

058-07/MW/jy

Measured Perturbation is Consistent with Predictions of Expected Radial Structure of Peeling-Ballooning Instability

High Speed Camera Images Confirm Predicted Filamentary Structure of ELMs

Typical H-mode Plasmas Characterized by Large Pressure Gradient Near the Plasma Edge

 Peeling-Ballooning theory suggests that ELMs are highly sensitive to both the edge pressure gradient and the edge current density

DIII–D Experiments Have Demonstrated That ELMs Can Be Controlled Using 3–D Magnetic Fields

 3-D fields generate a stochastic region in plasma edge, causing increased transport

DIII–D Experiments Have Demonstrated That ELMs Can Be Controlled Using 3–D Magnetic Fields

Applying 3-D Fields Reduces the Edge Pressure Gradient and Enables ELM-free Operation

 Increased Transport due to 3-D Fields Moves Pressure Gradient Slightly Away from Stability Boundary, Leading to ELM-free Operation

Edge Pressure Gradient

 Required perturbation for ELM suppression is only 10⁻⁴ of background magnetic field !!!

Improved Physics Understanding and Control Capabilities Provide Confidence that ITER will Succeed

- Good Energy Confinement
 - Reduce Heat Leakage Rate to a Minimum
 - Any Aspects of Turbulent-Driven Transport Now Understood
 - Increased Confidence in Confinement Extroplations to ITER
- High Plasma Pressure
 - Avoid or Control Large-Scale Instabilities
 - Pressure Limits Well Documented; Methods for Controlling Major Instabilities Demonstrated
 - > Developed control tools included in ITER baseline design
- Shield Chamber Walls from Hot Core Plasma
 - Reduce Focusing of Energy on Small Areas
 - \Rightarrow Methods for Reducing Transient Heat Fluxes Demonstrated
 - → 3-D magnetic coil set being considered for ITER design
- Successful demonstration on DIII-D of "advanced" scenarios provide significant performance margin

