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Why do we Need to Measure Fusion Products?

• “All I need is a camera, the loop
voltage and a neutron counter!”

• There are multiple uses and needs
beyond the simple, yet important,
need to measure fusion
performance
– Single particle physics
– Collective effects
– Advanced plasma control/Alpha

Engineering/Burn Control
• What are the scientific benefits

from measuring fusion products for
understanding and controlling
burning plasmas?

Early Fusion diagnostic



Outline

• Brief review of fusion products

• What do we need to measure and
understand in order to create the proper
conditions for fusion to occur?

• What do we need to measure and
understand in order to create the proper
conditions for burning plasmas?

• Brief outlook for DEMO and future



Fusion Products are the Result of a Multitude of
Reactions

• Advanced fuels

• Many reactions yielding gamma rays
• Proxies

– Beam ions, RF tail ions
• But now we have to think in terms of large population of MeV ions!!!

€ 

D + D→3
He  (0.8MeV ) + n  (2.45MeV )

D + D→ T  (1MeV ) + p  (3MeV )

D + T → α  (3.5MeV ) + n  (14.1MeV )

T + T → α + 2n(total of  11.3MeV )

€ 

D  + 3
He → α  (3.6MeV ) + p  (14.7MeV )

p +  
11
B → 3α  (total  of  8.7MeV )



Create the Conditions for Fusion



Uses for Fusion Product Measurements Quickly
Went Beyond Yield Derivation

• Measure fusion production
– Measuring neutron 2.45 MeV yield
– Measuring 15MeV proton yield for

D+3He reactions
– Derive fuel/main ion temperature

• Evaluate confinement by studying
tritium and 3He burnup
– Burnup is defined as the result of a

secondary fusion reaction
• E.g.

€ 

D + D→ T + p

D + T → α + n

See Krasilnikov (Monday) and Nishitani (this session)
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Detailed Information can be Gained with
Neutron Flux and Profile Measurements

• Neutron profile measurements can
yield information on:
– Heating (NBI, RF, etc)
– Fuelling
– Transport

• Isotopic transport (H,D,T, etc)
– Importance of fast ions
– Impact of instability
– Independent constraint on modeling
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Advanced Scenarios and Non-Standard
Discharges Require Additional Information

• Tomographic neutron
emission is required in
advanced scenarios
– Reversed Shear
– Current holes

• Conventional ion/fast ion
confinement does not
necessarily hold
– Impacts on alphas as

well

Vertical Neutron Camera Channel

Meas.

Simul.

A. Murari, NF 45 (2005) S195
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Unexpected Results Were Seen with 2-D Neutron
and Gamma Source Profile Measurements

• High energy gamma emission
can help identifying the
physcial mechanism
– Not poloidally symmetric
– Clear examples in RF heating

experiments
– Also some other cases with

strong edge localized fuelling

• ITER should include 2D
capability - even partial
– Neutrons and/or γ’s

– No need to be in one poloidal
plane

• See Kiptily (this session)

4.44 MeV γ

V.G. Kiptily, NF 45 (2005) L21

4He ions D ions

€ 

9
Be + α → n + γ +12C

€ 

12
C + D→ p + γ +13C

3.09 MeV γ



Neutron Spectroscopy Adds a very Powerful Tool for
Studying Confinement and Fusion Performance

• The energy spectrum contributes in
identifying the “source” of fusing
particles and their energies
– Contribution from thermal, beam,

tail and other fast ions
• Presence of alpha-D/T knock-ons

can be used advantageously for
fast-ion diagnosis of self-heating

• High energy end of spectrum
particularly useful/interesting

– Comparison of the 14 MeV versus
the 2.45 MeV can also give
valuable information of the isotopic
composition of the plasma and its
fuelling

– Can be part of the advanced
plasma and burn controls

• See Popovichev (this session)
H. Henriksson, et al, PPCF, 44 (2002) 1253

Neutron Energy
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Create the Conditions for Burning Plasmas



The Study of Charged Fusion Products (CFPs)
Requires a Detailed Understanding of Orbits

• In toroidal geometry:
– Gyroradius: ρ ~Ze(E/m)1/2/B

– Orbit shift from flux surface:
• Passing Δ  p ~2qρ
• Trapped Δ  t~2qρ/(ε)1/2

• For alpha particles in ITER
–  ρ ~ 5 cm
–  Δ  t ~ 15-20cm

• Need to also know
– Current and source

profiles!!!
– 3-D first wall geometry

Δ  p

Δ  t

Standard   Orbits



CFP Measurements offer the Possibility of Diagnosing
Confinement Properties  - External Perturbations

• The effects of TF ripple are especially
important for the confinement of CFPs
(and other fast ions)
– Loss of confinement/Apparent diffusion
– Localized heat load on first wall

• Stochastic Ripple Diffusion acts on a
class of trapped particles, mostly on
outer minor radius, diffusing them
rapidly to the edge/first wall

• Ripple trapped particles are a class of
fast particles trapped in the well
created by the ripple itself, creating a
very fast vertical drift
– Very hard to diagnose directly

• The effects of error fields are also not
well known for CFPs/alpha confinement



CFP Measurements offer the Possibility of Diagnosing
Confinement Properties  - Internal Perturbations

• The presence of turbulent diffusion can also
lead to non-optimized alpha heating (loss or
non central heating)
– Slowing down time ~ 1 sec
– Diffusion from center to mid-radius (ITER) in a

slowing down time consequently is
~0.5m2/sec

• On TFTR, measurements of CFP losses due to
turbulent/anomalous diffusion showed an
upper limit of 0.1m2/sec
– Important to validate the results for a burning

plasma experiment
– Measurements made on confined particles

(using α- CHERS) indicated a 0.03m2/sec
upper limit

– Why is it favorable compared to a thermal
diffusivity of ~1m2/sec
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CFP Measurements offer the Possibility of Diagnosing
Confinement Properties - Internal Perturbations

• MHD activity has been observed to
expel fast ions (including CFPs)
– NTMs, Fishbones, Sawteeth, Alfvén

Eigenmodes,
– ELMs? Could be significant in ITER
– Largest effect is believed to be

caused by passing particles forced
into a trapped orbit - largest effect in
low aspect ratio experiments

– Another effect is believed to be
caused by energetic particles
trapped in a local well - either TF or
MHD ripple

– For AEs, the mechanism is not well
established

Mirnov Signal

Escaping CFP flux

 m=1, n=1 sawtooth
precursor, passing/trapped
boundary

TFTR



Diagnosing CFP Behavior during Alfvén Eigenmode
Activity is Especially Important in a BPX

• A sufficiently large population of
fast ions (e.g. CFPs) can drive AE
activity

• This activity can, in turn, produce
additional CFP transport

• This non-linear mechanism acts in
space, and phase space

• Knowing mode structure is part of
the picture

• See Van Zeeland, Wednesday AM
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ITER will Require a Suite of CFP/Alpha Diagnostics

• ITER and other burning plasma
experiments will have large fast
ions populations, especially alphas

• Very difficult to directly measure
loss to first wall
– IR cameras remain base diagnostic

• Redistribution of energetic particles
can have impacts on alpha
heating and protection of first
wall/divertor

• Many approaches/techniques in
measuring confined population
distributions are needed to cover
ranges and to increase chance of
success



Diagnosing Alpha Losses to the First Wall in a
Burning Experiment is a Non-Trivial Task

• Alpha particles and energetic ions will circulate
many times before hitting a solid surface
– Travel mostly toroidally (dependent on qedge)
– Will sample the first wall and find the proud edge
– The impact location can change with plasma

shape and current, and ion drift direction

TFTR

Toroidal direction

ITER ITER

Top view

Poloidal view



Diagnosing Alpha Losses to First Wall is a Non-Trivial Task
How to Circumvent that?
• IR and visible cameras will

monitor the first wall and
could help identifying direct
alpha impacts
– No other information (such

as energy, flux and pitch
angle) available

• Will require a proxy
– Ion Cyclotron Emission
– Local gas puffing/neutral

detection
– Gamma detection from

local impact/fusion(e.g. JET)
– Most techniques imply a

prior knowledge of impact
location!

• And a full orbit code is required
for ITER with full FW geometry

K. Tobita, NF 35 (1995) 1585

JT-60U



Example: Measurements of Ion Cyclotron Emission
May Act as a Sensitive Fast-Ion Loss Diagnostic

• ICE and CAE are driven by a
bump-on-tail in the fast ion
velocity distribution (edge/SOL)
– AE can redistribute fast ions

• During fast ion redistribution/loss
events, strong 2nd Harmonic ICE
has been observed on many
devices (~ 50 MHz on ITER)

• Measured using RF/magnetic
pickup loops, FIR/microwave
scattering and reflectometry
(conventional and fast-wave)

• Full study is required
 H.H. Duong, et. al. NF 33 (1993)749

Neutron  Yield

ICE



The Direct Diagnosis of Confined CFPs is Crucial for
Two Major Aspects of Burning Plasma Physics

• Alpha Heating
– An efficient and central alpha heating is

crucial in low Q conditions
• Instability Drive

– High energy particles can drive instabilities
(e.g. AE s)

• Temporal, Spatial and Phase Space
distributions are critical to obtain physical
picture
– Measurement requirements do not reflect

these needs adequately at the moment



The Measurement of Confined CFPs Has Brought Much
Insight into Potential Loss/Diffusion Mechanisms

• One basic technique lies
on particle detection
through CX/neutralization
with beams or pellets
– NBI, pellets, lithium beam

are candidates
– Penetration and

attenuation serious
drawbacks for ITER/BPX

• Other candidates: CTS
(see Bindslev),
spectroscopy, knock-ons

S.S. Medley et al, NF 38 (1998)1283

TFTR
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DEMO and other BPX will Bring Additional Roles
to FP Measurements

• Alpha Channeling
– Channel alpha energy preferably to ions through wave

interaction
• Advanced control

– Burn control
– Source profile optimization

• Thermal, fast ions, spatial distribution
– Control of limiting AE MHD activity
– Efficient and uniform fuelling

• Pellet, etc

• Advanced fuels
– Polarized fusion
– Aneutronic reaction

• Test the p+11B and CFP diagnostics during hydrogen phase?



Summary

• Diagnostics based on Fusion Products
measurements can yield comprehensive and
vital information of the behavior of burning
plasmas
– Optimize fusion production
– Optimize self-heating conditions

• They can be made compatible with nuclear
environment (some are naturally!)

• Due to their nature, they will be also called to
serve may roles in controlling burning plasma
performance (e.g. burn control) in DEMO and
future reactors
– Require full vetting in ITER and similar experiments


