Upgrades Completed at the DIII-D Facility During the Long Torus Opening in FY05-06

Presented by
Joseph F. Tooker for the DIII-D Team

Presented at the
17th Topical Meeting on the
Technology of Fusion Energy
Albuquerque, New Mexico

November 13-15, 2006
Long Torus Opening Activities ended
March 29, 2006
Long Torus Opening Period Minimized Impact on Physics Operation

- Completed 15.6 weeks (14 weeks scheduled) of operation during the physics campaign of FY05
- Extensive work performed both inside and outside the vessel during the long torus opening period of 4/19/05 – 3/29/06
- Activities accomplished during torus opening
 - Proceeded with upgrading the Electron Cyclotron System toward six long-pulse gyrotrons
 - Installed new lower divertor
 - Rotated one of four beamlines for counter injection
 - Upgraded diagnostics
 - Upgraded one Fast Wave system
 - Upgraded DIII-D water cooling system
 - Proceeded with upgrades in coil cooling and in AC power towards ten-second operation
- Physics operation resumed on June 7\(^{th}\) and 12.7 weeks of operation completed during second half of FY06
Increases in EC System Power and Pulse-Length Enable New Physics Capability

- **Physics enabled**
 - Control current profile
 - Sustain high performance plasmas
 - Stabilize or avoid tearing mode
 - Perform transport barrier studies
 - Perform modulated transport and critical gradient studies
 - Perform electron heating

- **Prior to LTOA EC System supported physics campaigns with**
 - Three 1 MW, 10 second gyrotrons from CPI
 - Three 0.75 MW, 2 second Russian gyrotrons

- **During LTOA**
 - Refurbished two Russian gyrotron “sockets” for CPI gyrotrons
 - Built new CPI gyrotron “socket”
 - Developmental depressed collector gyrotron installed in new “socket”
 - First CPI replacement gyrotron installed in refurbished “socket” and conditioned
 - Second & third gyrotrons arrived late

- **EC resuming support of physics with**
 - Two gyrotrons in FY06
 - Up to six 1 MW, 10 second gyrotrons from CPI in FY07
 - Plus developmental 1.2 MW depressed collector gyrotron if conditions up in power satisfactorily
First Replacement Gyrotron Supported Physics in FY06

- Refurbished water cooling manifold
- Superconducting magnet
- Refurbished Gyrotron Stand
- Gyrotron
- Chamber for focusing mirror
- Dummy loads
New Lower Divertor Provides New Capability and Maintains Shape Flexibility

Motivation
- Density control in high triangularity, high performance
 - Single-Null and Double-Null Advanced Tokamak plasmas
 - QH-mode plasmas
- Comparison of long duration Single-Null and Double-Null plasmas
- Pedestal physics with range of collisionalities
- Mass transport physics
- Optical access to inner divertor leg
- Detachment control via pumping
New Lower Diverter Installed and Supporting Plasma Operations

- Divertor cooling plate manufactured by ASIPP in China
- Divertor plate installed November 23, 2005
- 579 new tiles fabricated, cleaned, and installed
- Tiles leveled to within 4 mils
- Installation completed on March 27, 2006
- Plasma facing tiles conditioned during plasma start-up that began May 16, 2006
- Routinely running various high performance plasma configurations
Tile Design of New Lower Diverter Improves Toroidal Symmetry and Reduces Material Erosion

• New design features
 – Elimination of bolt holes in high heat flux area
 – Reduced gaps between tiles
 – Improved alignment of tiles

• Clear reduction in toroidal asymmetries in tile heating
Rotation of 210 Beamline

- **Opens new areas for physics**
 - QH-mode ELM-free regime with central co-rotation
 - Understanding physics of rotation
 - Resistive Wall Mode stability with low rotation
 - Transport barrier control
 - Fast ion physics
 - Understanding the physics of neutral beam current drive

- **Improved plasma measurements**
 - MSE measurement viewing counter beam allows separation of Er and J
 - Co and counter Charge Exchange Recombination
210 Beamline Rotated from Co-Injection to Counter-Injection

Co-Injection Orientation
Prior to LTOA

Counter-Injection Orientation
After LTOA
Modification of Rotation Demonstrated using New Counter Neutral Beam Injection Capability

Plasma goes from rapid co-rotation to near zero rotation with introduction of counter beams
Other Activities Performed During Long Torus Opening (Partial List)

- **Fast Wave**
 - Refurbish 285/300 antenna
 - Converted ABB #1 transmitter to EIMAC tube (1MW → 2MW)

- **Restive Wall Mode**
 - Installed six additional high bandwidth amplifiers for I-coils (6 → 12)

- **ECH**
 - Installed long-pulse launcher with fast steering

- **Pellet Injector for ELM pacemaking**

- **Plasma Control System**
 - Control algorithm improvements
 - Hardware upgrades

- **Maintenance**
 - Motor generator bearing inspection and balancing
 - General maintenance
High Bandwidth Amplifiers Energize I-coils during Resistive Wall Mode Experiments

- 12 amplifiers installed and tested
 - Capable of further expansion to 24 amplifiers
- New audio amplifier patch panel was installed
- System returned to operation in June 2006
Increased Capability of DIII-D Water Cooling System

- Installed two higher capacity, higher efficiency cooling towers for increased future heat loads
- Upgraded heat-exchanger and pumps in ECH cooling loop to improve heat rejection
Progress in Upgrades Towards 10-Second Operation

• **Improved cooling of toroidal coil return bus**
 – Added water-cooled plates to bus in 24 of 48 locations
 – Installed in locations prior to reinstallation of other equipment
 – Addressed other locations with difficult access

• **Increasing AC power for auxiliary heating systems**
 – Existing transformer rated at 84 MVA for one second
 • Sized in 1979 for eight ½ second neutral beams
 – New transformer coming from China rated at 110 MVA for 10 seconds enables simultaneous operation of
 • Eight neutral beams for 5 seconds
 • Six 1 MW and two 1.5 MW gyrotrons for 10 seconds
 • Three 2 MW fast wave systems for 10 seconds
 – Transformer to be installed at earliest opportunity
DIII-D Returned to Physics Operation in 2006

- Completed installation of lower divertor on March 27, 2006
- Counter beamline
 - Completed installation of beamline on January 9, 2006
 - Completed installation of support systems on March 30, 2006
- Performed diagnostic calibrations
- Closed DIII-D vessel on March 29, 2006
- Completed system check-out and plasma start-up
- Resumed plasma physics operation on June 7, 2006
- Completed 12.7 weeks of physics operation in FY06
 - Results highlighted in presentations made earlier this year at
 - 21st IAEA Fusion Energy Conference
 - 48th Annual Meeting of the APS Division of Plasma Physics
Conclusion

• Completed upgrades to DIII-D during LTOA and successfully resumed physics operation
• Completed a 12.7-week physics campaign in FY06 during which many exciting new results were obtained by exploiting the new capabilities of DIII-D
• Upgraded DIII-D well positioned to continue advanced tokamak research over the next decade
Additional Presentations

• Graphite Tile Thermal Performance in New DIII-D Lower Divertor, C. Murphy, November 14, In-Vessel Component Session
• A Network Based Telemetry Upgrade for the DIII-D Neutral Beam Power Diagnostics, H.H. Chiu, November 14, Poster Session
• Rotation of a Neutral Beamline to Obtain Counter-Injection on the DIII-D Tokamak, J. T. Scoville, November 15, Plasma Engineering, Heating and Control Session
• Diagnostic Developments on DIII-D, R. Boivin, November 15, Diagnostic Session