Upgrades Completed at the DIII-D Facility During the Long Torus Opening in FY05-06

Presented by Joseph F. Tooker for the DIII-D Team

Presented at the 17th Topical Meeting on the Technology of Fusion Energy Albuquerque, New Mexico

November 13-15, 2006

Long Torus Opening Activities ended March 29, 2006

Long Torus Opening Period Minimized Impact on Physics Operation

- Completed 15.6 weeks (14 weeks scheduled) of operation during the physics campaign of FY05
- Extensive work performed both inside and outside the vessel during the long torus opening period of 4/19/05 – 3/29/06
- Activities accomplished during torus opening
 - Proceeded with upgrading the Electron Cyclotron System toward six long-pulse gyrotrons
 - Installed new lower divertor
 - Rotated one of four beamlines for counter injection
 - Upgraded diagnostics
 - Upgraded one Fast Wave system
 - Upgraded DIII-D water cooling system
 - Proceeded with upgrades in coil cooling and in AC power towards ten-second operation
- Physics operation resumed on June 7th and 12.7 weeks of operation completed during second half of FY06

Increases in EC System Power and Pulse-Length Enable New Physics Capability

• Physics enabled

- Control current profile
- Sustain high performance plasmas
- Stabilize or avoid tearing mode
- Perform transport barrier studies
- Perform modulated transport and critical gradient studies
- Perform electron heating

Prior to LTOA EC System supported physics campaigns with

- Three 1 MW, 10 second gyrotrons from CPI
- Three 0.75 MW, 2 second Russian gyrotrons

• During LTOA

- Refurbished two Russian gyrotron "sockets" for CPI gyrotrons
- Built new CPI gyrotron "socket"
- Developmental depressed collector gyrotron installed in new "socket"
- First CPI replacement gyrotron installed in refurbished "socket" and conditioned
- Second & third gyrotrons arrived late
- EC resuming support of physics with
 - Two gyrotrons in FY06
 - Up to six 1 MW, 10 second gyrotrons from CPI in FY07
 - Plus developmental 1.2 MW depressed collector gyrotron if conditions up in power satisfactorily

First Replacement Gyrotron Supported Physics in FY06

New Lower Divertor Provides New Capability and Maintains Shape Flexibility

Motivation

- Density control in high triangularity, high performance
 - Single-Null and Double-Null Advanced Tokamak plasmas
 - QH-mode plasmas
- Comparison of long duration Single-Null and Double-Null plasmas
- Pedestal physics with range of collisionalities
- Mass transport physics
- Optical access to inner divertor leg
- Detachment control via pumping

Single Null

PATIONAL FUSION FACILITY

New Lower Diverter Installed and Supporting Plasma Operations

- Divertor cooling plate manufactured by ASIPP in China
- Divertor plate installed November 23, 2005
- 579 new tiles fabricated, cleaned, and installed
- Tiles leveled to within 4 mils
- Installation completed on March 27, 2006
- Plasma facing tiles conditioned during plasma start-up that began May 16, 2006
- Routinely running various high performance plasma configurations

Tile Design of New Lower Diverter Improves Toroidal Symmetry and Reduces Material Erosion

• New design features

- Elimination of bolt holes in high heat flux area
- Reduced gaps between tiles
- Improved alignment of tiles

Clear reduction in toroidal asymmetries in tile heating

Surface Temperature of Lower Divertor from IRTV

Old Lower Divertor (2005)

Outer Strike Point Inner Strike Point

New Lower Divertor (2006)

Rotation of 210 Beamline

Opens new areas for physics

- QH-mode ELM-free regime with central co-rotation
- Understanding physics of rotation
- Resistive Wall Mode stability with low rotation
- Transport barrier control
- Fast ion physics
- Understanding the physics of neutral beam current drive

Improved plasma measurements

- MSE measurement viewing counter beam allows separation of Er and J
- Co and counter Charge Exchange Recombination

210 Beamline Rotated from Co-Injection to Counter-Injection

Counter-Injection Orientation after LTOA

Modification of Rotation Demonstrated using New Counter Neutral Beam Injection Capability

Plasma goes from rapid co-rotation to near zero rotation with introduction of counter beams

Other Activities Performed During Long Torus Opening (Partial List)

- Fast Wave
 - Refurbish 285/300 antenna
 - Converted ABB #1 transmitter to EIMAC tube (1MW \rightarrow 2MW)

Restive Wall Mode

- Installed six additional high bandwidth amplifiers for I-coils (6 \rightarrow 12)
- ECH
 - Installed long-pulse launcher with fast steering
- Pellet Injector for ELM pacemaking

Plasma Control System

- Control algorithm improvements
- Hardware upgrades
- Maintenance
 - Motor generator bearing inspection and balancing
 - General maintenance

High Bandwidth Amplifiers Energize I-coils during Resistive Wall Mode Experiments

- 12 amplifiers installed and tested
 - Capable of further expansion to 24 amplifiers
- New audio amplifier patch panel was installed
- System returned to operation in June 2006

Increased Capability of DIII-D Water Cooling System

- Installed two higher capacity, higher efficiency cooling towers for increased future heat loads
- Upgraded heat-exchanger and pumps in ECH cooling loop to improve heat rejection

Cooling towers installed

Upgraded ECH HX and Pumps

Progress in Upgrades Towards 10-Second Operation

Improved cooling of toroidal coil return bus

- Added water-cooled plates to bus in 24 of 48 locations
- Installed in locations prior to reinstallation of other equipment
- Addressed other locations with difficult access

• Increasing AC power for auxiliary heating systems

- Existing transformer rated at 84 MVA for one second
 - Sized in 1979 for eight 1/2 second neutral beams
- New transformer coming from China rated at 110 MVA for 10 seconds enables simultaneous operation of
 - Eight neutral beams for 5 seconds
 - Six 1 MW and two 1.5 MW gyrotrons for 10 seconds
 - Three 2 MW fast wave systems for 10 seconds
- Transformer to be installed at earliest opportunity

DIII-D Returned to Physics Operation in 2006

- Completed installation of lower divertor on March 27, 2006
- Counter beamline
 - Completed installation of beamline on January 9, 2006
 - Completed installation of support systems on March 30, 2006
- Performed diagnostic calibrations
- Closed DIII-D vessel on March 29, 2006
- Completed system check-out and plasma start-up
- Resumed plasma physics operation on June 7, 2006
- Completed 12.7 weeks of physics operation in FY06
 - Results highlighted in presentations made earlier this year at
 - 21st IAEA Fusion Energy Conference
 - 48th Annual Meeting of the APS Division of Plasma Physics

Conclusion

- Completed upgrades to DIII-D during LTOA and successfully resumed physics operation
- Completed a 12.7-week physics campaign in FY06 during which many exciting new results were obtained by exploiting the new capabilities of DIII-D
- Upgraded DIII-D well positioned to continue advanced tokamak research over the next decade

Additional Presentations

- Graphite Tile Thermal Performance in New DIII-D Lower Divertor, C. Murphy, November 14, In-Vessel Component Session
- A Network Based Telemetry Upgrade for the DIII-D Neutral Beam Power Diagnostics, H.H. Chiu, November 14, Poster Session
- Rotation of a Neutral Beamline to Obtain Counter-Injection on the DIII-D Tokamak, J. T. Scoville, November 15, Plasma Engineering, Heating and Control Session
- Diagnostic Developments on DIII-D, R. Boivin, November 15, Diagnostic Session

