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Abstract. The onset and nonlinear evolution of Edge Localized Modes (ELMs) in toroidally
confined plasmas are known to shed thermal energy from the edge of the confinement region,
and may also affect the core plasma through nonlinear mode coupling. The physics of this
process is not well understood, although the concomitant large bursts of thermal energy
transport are a major concern for future burning plasma experiments. The evolution of ELMs
is inherently nonlinear and analytic approaches are limited by the complexity of the problem.
Save a handful of recent important theoretical works, the nonlinear consequences of ELMs are
mainly unexplored. Recent developments in the NIMROD code [http://nimrodteam.org] have
enabled the computational study of ELMs in tokamaks in the extended magnetohydrodynamic
(MHD) framework, and a new initiative was formed to understand the basic physics of
their nonlinear evolution. The results of these investigations are presented for both model
equilibria and accurate reconstructions from the DIII-D experiment at General Atomics
[http://fusion.gat.com/diii-d/]. These results show a filamentary high temperature structure
propagating radially outward, which is strongly damped by experimentally relevant toroidal
flow shear. Two fluid and gyroviscous terms are included linearly as a preliminary indication of
these important physical effects, and stabilization of higher wave number modes is observed.

1. Introduction
With recent advances in computer hardware and numerical algorithm efficiency, it has become
viable for large-scale computational modeling of plasma dynamics to play an important role in
the design and analysis of magnetic confinement fusion devices. An example of an important
fusion problem that is being addressed by this approach is the onset and nonlinear evolution of
Edge Localized Modes (ELMs) and their effect on global confinement. ELMs are high-frequency
bursting perturbations observed in experimental discharges relevant to fusion. These modes
shed thermal energy from the edge of the confinement region and can release enough energy
to damage or destroy plasma-facing components of future burning plasma experiments. They
may also drive instabilities in the core plasma through nonlinear mode coupling. Recently, the
NIMROD Team (http://nimrodteam.org) has begun a numerical study of the global dynamics
of ELMs in tokamaks.

Toroidal magnetic confinement systems are characterized by a helical magnetic field where
the field winding ratio of toroidal to poloidal turns (the safety factor q) is a function of magnetic
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flux, typically increasing from q ≈ 1 in the core to q ≈ 4 at the edge, with an inreasing gradient
toward the edge. Resonance in perturbed fields occurs at rational surfaces in q, where m/n = q
with m the poloidal mode number and n the toroidal mode number, m and n being integers.
Near the edge of the plasma the density of rational surfaces increases as the gradient in q
increases. Thus ELMs typically have a large number of interacting, overlapping linear modes
contributing to their nonlinear evolution.

Previous studies have found the onset of ELMs to be well described as a linear MHD instability
termed peeling-ballooning [1, 2]. The peeling component of the instability is the free-energy drive
due to the current density gradient, and the ballooning component is the free-energy drive due
to the pressure gradient. At the edge of the confinement region of tokamaks, poloidal flows
reduce energy transport and allow a steep pressure gradient to develop. The strong pressure
gradient drives highly localized charge-current density. The pressure and current gradients are
also coupled through the MHD equilibrium force-balance (described below), but they effect
distinct characteristics in the linearly unstable modes that are excited. An individual ELM will
typically display a combination of both sets of linear characteristics.

However, the evolution of ELMs is inherently nonlinear, the consequences of which are
relatively unexplored [3]. Analytic methods for the study of the nonlinear evolution of ELMs
are limited by the complexity of the problem. This study focuses on computational stability
analyses using the NIMROD code [4]. NIMROD solves linear and nonlinear extended-MHD
equations as initial-value computations with a mesh of finite elements for the poloidal (R-Z)
plane and finite Fourier series for the toroidal direction. The time-advance is described in Ref.
[5]. Among numerous options one can choose to solve either the single fluid MHD equations or
include Hall and gyroviscous terms to solve the two fluid MHD equations. The single fluid form
of the equations is

∂n

∂t
+∇ · nV = 0

ρ

(
∂V
∂t

+ (V · ∇)V
)

= J×B−∇p−∇ ·Π

E = −V ×B + ηJ

n
∂T

∂t
+ nV · ∇T + (Γ− 1)nT∇ ·V = −(Γ− 1)∇ · q + (Γ− 1)Q

q = −(κ‖ − κ⊥)∇‖T − κ⊥∇T
∂B
∂t

= −∇×E

µoJ = ∇×B (1)

where n is the number density, V the fluid velocity, ρ the mass density, J the current density, B
the magnetic field, p the pressure, Π the stress tensor (including a numerical −ρν∇2V ), E the
electric field, η the electric resistivity, T the temperature, Γ the ratio of specific heats, q the heat
flux, and κ the thermal diffusivity. Within the code there are various options for the functional
form of the diffusive coefficients. Here, we make use of either constant or temperature-dependent
resistivity (η ∼ T−

3
2 from the Spitzer result [6]), while using time-independent thermal diffusivity

coefficients and viscosity.
A more accurate model can be necessary to address the subtle physics effects of differences

in the electron and ion behaviors, such as electric field responses and the gyro-motion around
magnetic field lines. Some of these effects can be critically important to stability and can
generate flows in the evolution of the plasma. A well-known, more accurate ordering scheme
than the MHD ordering used above yields the two fluid terms in the momentum equation and
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Ohm’s law:

ρ

(
∂V
∂t

+ (V · ∇)V
)

= J×B−∇p−∇ ·Π‖i −∇ ·Πgvi

E = −V ×B +
1
ne

(J×B−∇pe −∇ ·Π‖e) + ηJ

(2)

where e and i refer to the electron and ion species, and ‖ and ⊥ refer to parallel and perpendicular
to the magnetic field. For the Braginskii model [7] the gyroviscous stress tensor is

Πgv =
mipi

4eB

[
b̂×W ·

(
I + 3b̂b̂

)
−

(
3b̂b̂ + I

)
·W × b̂

]
(3)

W = ∇V +∇VT − 2
3
I∇ ·V (4)

where b̂ = B/B. More details can be found in Ref. [5].
The semi-implicit advance used in the NIMROD code allows numerically stable computations

at time-steps that vastly exceed explicit numerical stability limits. For example, the nonlinear
simulation of magnetic island evolution presented in Ref. [4] was run with a CFL number of 104.
While the nonlinear dynamics of the ELM computations occur over relatively short time-scales,
the more accurate two-fluid equations have dispersive waves that further extend the range of
time-scales. The time-advance requires the solution of sparse ill-conditioned linear systems at
each time-step, and the parallel SuperLU library [8] provides an effective means for solving and
preconditioning these systems.

In Section 2, we describe the two types of equilibria used in this study. Next, in Section 3 we
present results from linear computations using the single fluid equations and results including
the Hall and Gyroviscous terms in Section 4. Nonlinear results using the single fluid equations
are presented in Section 4. Finally, in Section 5 the results are summarized and discussed.

2. Equilibria
The purpose of these computations is to gain intuition into experimental observations. The
basic model for interpreting experimental data is ideal MHD, which are equations 1 with all
diffusivities set to zero. To lowest order, the plasma state is well represented by the steady
state force balance solution, or equilibrium, of these ideal MHD equations. Accurate equilibrium
reconstructions from the DIII-D experiment are used as initial conditions in these computations.
To explore the context of experimental configurations, model equilibria are constructed with
parameterized pressure and current, the two sources of free energy to the ELMs.

A model equilibrium configuration was constructed to be unstable only to a dominantly
ballooning edge instability with low shear and shaping, and yet to reside in the zero dimensional
parameter space of typical DIII-D discharges. The profiles for electron temperature and safety
factor q are specified parametrically as initial settings for the solution. The equilibrium magnetic
flux solution is computed keeping the total current and pressure fixed. This produces a reduction
of shear in the near edge q profile. The localized edge current density and pressure gradient
are clearly evident in the profiles shown in Fig. 1. This ballooning-dominant configuration is
relatively easy to resolve radially because of the low edge shear.

Accurate equilibrium reconstructions using data from a high β ELMing DIII-D discharge,
designed to study edge localized modes, were also used in this study. In ELMing discharges,
the pressure and current profiles near the edge are constantly changing as the gradients increase
and decrease due to competition between heating and instability induced transport. Typically,
reconstructions are done at times in between the strong signal perturbations associated with
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Figure 2. The profiles and shape of the
DIII-D equilibrium reconstruction from lab-
oratory measurements.

ELMs. Thus, if the reconstructions and stability analysis are done to extreme accuracy, the
results tend to be stable to ELMs. The typical approach to the study of edge modes is to take
the equilibrium reconstructions as a reference point and parameterize the pressure and current
profiles such that the stability boundaries can be mapped within the parameter space traversed
by the experiment. An alternative approach that is used for our study is to take reconstructions
at times just before the ELM becomes unstable, which tends to produce unstable equilibria
directly.

The parallel current density, magnetic winding ratio (or safety factor, q), and pressure
profiles for the equilibrium are shown in Fig. 2. The poloidal magnetic field configuration
has a single null below the confinement region. The non-dimensional geometric and profile
properties are also similar to high performance tokamak operation (H-mode) in Alcator
C-mod (http://www.psfc.mit.edu) and advanced scenarios for ITER (http://www.iter.org).
This equilibrium represents an average of the data between several ELM cycles just before
onset of the mode.

3. Linear Stability
With the model equilibrium shown in Fig. 1, the resistive MHD computations find that growth
rates increase monotonically with n as seen in Fig. 3. This is consistent with the MHD theory of
ballooning modes. The linear results from NIMROD compare favorably with results linear ideal
MHD results for ballooning-dominant instabilities with eigenfunctions and growth rates that
are in reasonable agreement. This implies that toroidal resolution in a nonlinear resistive MHD
computation cannot be achieved when starting from an initial condition near equipartition in
energy, as the highest mode numbers will be the fastest growing. Nonetheless, this equilibrium
provides a suitable benchmark case for comparing linear results obtained with different numerical
approaches.

In the specification of the resistivity profile in the case of the model equilibrium, for simplicity
we use a constant resistivity in the core which quickly transitions to a large constant resistivity
to model a cold, low density region surrounding the plasma, as shown in Fig. 1(a). The growth
rates computed by NIMROD with non-ideal MHD depend weakly on the resistivity and viscosity
in the vicinity of the mode, where there is a large gradient in resistivity, but the variation of
growth rate with n agrees qualitatively with the linear ideal MHD results from the ELITE [9]

4



0 2 4 6 8 10 12 14 16 18 20
Toroidal Mode Number (n)

G
ro

w
th

 R
at

e 
(s

–1
) 

  (
×

10
5
)

NIMROD
ηcore = 2×10–2 ηvac = 2×10–4

NIMROD
ηcore = 2×10–2 ηvac = 20

NIMROD
ηcore = 2×10–2 ηvac = 2×102

Ideal MHD

0

1

2

3

4

5

1.0 1.5 2.0
R (m)

Z
 (

m
)

n=7 Br(a) (b)

r (AU)

η
 (

a.
u

.)

Separatrix

Vacuum
region

Core
plasma

ηcore

ηvac

(c)

–1.0

–0.5

0.0

0.5

1.0
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number n = 7 (b), and the growth rates as a function of n for the model equilibrium under
various resistivity profiles and ideal MHD using the ELITE and GATO codes (c).

and GATO [10] codes, as shown in Fig. 3. Varying the electrical resistivity shaping parameter
by three orders of magnitude affects the growth rate values by less than a factor of 2, but it
does not change the spectrum qualitatively. Here, the magnetic Prandtl number Pm, the ratio
of kinematic viscosity to electrical diffusivity is held fixed while both the core and surrounding
resistivity values are varied.

The effect of dissipation on the linear behavior of ideal modes can be either stabilizing or
destabilizing, depending on whether damping or the breaking of the frozen field line constraint
is dominant. The resistivity should increase near the edge and into the vacuum region, which
can be important in the nonlinear evolution. But linearly the scaling is weak.

Although there is a weak scaling of the growth rates with the resistivity, the resistivity varies
strongly across this region, and the vacuum resistivity setting can be important. In Fig. 3 the
resistivity everywhere is decreased by a factor of 10, along with viscosity, from S = 1 × 106 to
S = 1 × 107, this decreases the growth rates. When the vacuum resistivity alone is increased
the growth rates increase, and conversely we see an increase of growth rates with decreasing
core resistivity while the vacuum resistivity is held fixed. This is due to the reduction of the
viscosity while the Prandtl number is held fixed. Reduction of the viscosity to levels where the
linear growth rates are weakly affected has not proven viable in the computation of the nonlinear
evolution. In the experiment, there is some viscous damping to velocity fluctuations, which we
approximate with diffusive viscosity.

For the experimental equilibrium reconstruction, the linear growth rate spectrum with respect
to toroidal mode number for the single fluid MHD case is peaked at n = 12 with modes 5− 20
being unstable, as shown in Fig. 4. The peak growth rate is 2.3 × 105 s−1. This indicates
that the respective equilibrium is well above the threshold for ideal linear instability. In the
actual experiment, the stability boundary is crossed and growth rates increase from zero with
time. The ELM becomes nonlinear and modifies the equilibrium and the cycle repeats. With
the equilibrium reconstructions taken just before the ELM with time averaging in the data, the
reconstruction is linearly unstable.

Recent advances in NIMROD allow drift effects associated with the Hall electric field
and gyroviscosity to be considered as described in Section 1. Conventional wisdom holds
that two-fluid effects are stabilizing at large n-values [11], and this is often cited to explain

5



0 5 10 15 20 25 30 35 40 45
n

γ
 (

s–1
) 

(×
10

5 )

Nonlinear
growthNonlinear

growth

Linear
growth

0

1

2

3

4

5

6

7

Figure 4. The growth rates as a function
of toroidal mode number n for the DIII-D
equilibrium reconstruction. Nonlinear growth
rates are the exponential growth phase driven
by coupling between exponentially growing
linear modes, before the growth rates slow.

experimental observations that very high mode numbers are not observed in ELM instabilities.
This stabilization is due to the the drift velocity which is derived from the two fluid equations

ω∗e,i =
c

qe,inB2
kθ(B×∇pe,i)θ (5)

which is peaked in the edge region as shown in Fig. 5(a). NIMROD is based on a fluid model,
which does not eliminate the high frequecy waves and accurately tracks the evolution. High
frequency waves can be eliminated in the drift ordering, which can be convenient when used to
investigate long time-scale dynamics.

We have calculated the linear growth rates of the equilibria shown in Fig. 2 with Hall and
gyroviscous effects, and preliminary results are summarized in Fig. 5(b). Here we plot the linear
growth rate as a function of the toroidal mode number for two different models (MHD and
Hall-MHD with gyroviscosity) with anisotropic thermal diffusivity and resistivity relevant to
experiment. The drift effect is clearly stabilizing to higher mode numbers while the lower mode
numbers are weakly affected. The eigenfunctions are similar, but include a resonance condition
associated with the poloidal flow, which is also seen with toroidal flow shear as described below
in Fig. 8. A poloidal shift in the peak amplitude of higher mode number eigenfunctions has also
been observed [5].

ELMs are characterized by a broad linear instability spectrum, which depends on the
employed physics model. As these growing modes couple nonlinearly the spectral energy transfer
will display rich dynamics that are important to understand for experimental interpretation.
Differences in the model will cause differences in the linear spectrum, but how these differences
affect the mode coupling and evolution will be even stronger because of long time-scales involved
and additional nonlinear terms. Much of this physics remains unexplored and yet is critical for
interpreting experimental results. We begin this exploration with nonlinear computations using
these equilibria.

4. Nonlinear Resistive MHD
The nonlinear ELM computations solve the resistive MHD model with small amplitude
perturbations in the initial conditions which excite the unstable ELMs. The computations
follows the evolution well into the nonlinear phase and show the initial linear mode structure
causing a large radial perturbation to the pedestal region with wavelength of the dominant
linear mode. These form vortices as they move outward, curling in on themselves. Finally the
structures break off and separate from the main plasma, forming filaments. These filamentary
thermal structures extend from the separatrix and propagate radially to the wall as the
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computation progresses. Radial propagation of filamentary structures has been observed over
the past few years on DIII-D [3] and MAST [12].

For the model equilibrium with ballooning dominant instability, the early nonlinear evolution
of the edge mode shows an energy spectrum peaked at high and low n. The high n ∼ 20 modes
have the largest growth rates and the low n ∼ 1 modes being nonlinearly driven by nearest
neighbor coupling of high n modes. The mode structure shows fingers of high temperature
flowing outward, as shown in Fig. 6(a). These computations lose toroidal resolution as the high
n modes become large, and the computation terminates long before the filaments propagate to
the wall.

For the computation using the realistic equilibrium, the electrical resistivity is temperature-
dependent (Spitzer resistivity, based on the evolving toroidally averaged temperature). The
magnetic Reynolds number S = 2 × 107 while the Prandtl number is Pm = 10. The
perpendicular thermal diffusivity is 25 m2/s, and the parallel thermal diffusivity is 105 times
larger. In general, the dependence of the growth rates on thermal diffusivity is weak in the linear
phase. In the nonlinear phase, thermal transport can be extremely important. We use larger
values than the experiment for the convenience of computation.

The temporal evolution of the kinetic energy associated with each of the toroidal Fourier
components for the realistic equilibrium is shown in Fig. 7. There is a linear growth phase for
0.01 ms < t < 0.03 ms, followed by nonlinear saturation. Only modes in the range 5 ≤ n ≤ 20
exhibit linear growth, as shown in Fig. 4. Higher and lower mode numbers are nonlinearly
driven by mode coupling and exhibit larger growth rates γ ∼ e(γ1+γ2)t for each mode driven by
two other modes with growth rates γ1 and γ2.

As described in the previous section, the growth rate spectrum is peaked around n = 12.
This is attributed to the anisotropic thermal conduction, some viscous dissipation, and the
large current-gradient (peeling component) at the edge of the confinement region in this
equilibrium. Numerical convergence tests indicate that while greater resolution is needed to
achieve quantitative accuracy, the peaked linear spectrum is qualitatively correct. Other modes
may be linearly unstable but grow too slowly to show independent activity before nonlinear
coupling becomes significant. Of particular importance is that the nonlinear coupling drives low
n-fluctuations (including n = 1), in addition to high-n fluctuations, and low-n activity in the
edge may excite resonant effects in the core plasma.

The evolution is more dynamic than what is evident from still figures. The nonlinear evolution
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of this mode drives a rapid loss of internal energy with approximately 70 kJ (∼10%) of the
internal energy being lost within 50 µs. Laboratory measurements indicate 15 − 20% energy
loss during large ELM events in DIII-D, and we note that the numerical computation has not
completed the ELM cycle. The internal energy is still decreasing at the end of the computation
while pressure is lost over the entire pedestal region.

Analysis of the results finds the heat flux on the wall to be nonuniform with greatest intensity
occurring in spots on the top and bottom of the chamber. The convective heat flux contribution
to the heat loss is greater than that of the conductive heat loss, in contrast to NIMROD
computational results on plasma disruption due to an internal mode [13]. The fact that the
primary loss channel is convective rather than conductive is not inconsistent with laboratory
measurements [14].

Toroidal flow shear can stabilize, destabilize, increase or decrease the linear growth rate
spectrum of an ELM. A toroidal flow profile was included in the computations to explore the
effect on the nonlinear evolution. The profile has constant flow across the core and a linearly
decreasing flow with magnetic flux from ψ = 0.85 to 1.0 as shown in Fig. 8(a). The value of
the flow at the very core was given as Vc = 2 × 105 m/s, which is experimentally relevant. A
series of computations with varying flow conditions is planned, but is prohibitively expensive to
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compute readily, especially nonlinearly, and we report here on a single case for comparison with
no flow.
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When toroidal flow is included in the evolution, the growth rates increase by approximately
20% linearly with no qualitative changes in the spectrum. The linear eigenfunctions show a
phase reversal of the perturbation radially as shown in Fig. 8. This is in qualitative agreement
with ideal MHD results.

Nonlinearly, the effects of toroidal flow shear are extreme. There is a marked decrease in the
amplitude of the perturbation poloidally as shown in Fig. 9. The filaments which propagated
well out into the vacuum region for the no flow case are sheared off by the flow and do not
propagate far into the vacuum region.
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5. Discussion and Summary
Because of the deleterious effects of ELMs on plasma performance and operation, it is important
to understand both their onset and the manner in which they deposit heat on the wall. A better
understanding of onset will lead to operations and control techniques that avoid the most harmful
form of ELMs. Knowledge of heat transport can be used to engineer configurations that are
robust to ELM activity. We have only begun the efforts to understand these processes.

At present, the results must be considered preliminary, since more numerical investigation
is needed. The results are sufficiently mature, however, to provide a useful guide for
the requirements of nonlinear computations. We expect that a two-fluid Ohms law, FLR
effects (gyro-viscosity), and anisotropic thermal diffusivity will become effective stabilization
mechanisms at pedestal parameters relevant to the true experimental crossing of the stability
boundary, where the linear MHD growth rate is lower. The nonlinear computations presented
here are some of the first to show significant plasma-wall interactions as a result of an ELM
instability over a global computational domain. The results appear to reproduce some important
experimental observations such as the energy loss time-scale and the heat loss mechanism. This
suggests that nonlinear fluid-based computational models have the potential to provide insight
into how ELMs evolve and deposit heat onto the wall. Further refinements will include more
accurate geometry, improved boundary conditions, and more refined physics models, such as
nonlinear two-fluid and gyro-viscous effects.
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