
QTYUIOP

GA–A25106

D ISTRIBUTED MDSplus DATABASE
PERFORMANCE WITH L INUX CLUSTERS

by
D .H . M INOR and J .R . BURRUSS

JULY 2005

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

QTYUIOP

GA–A25106

D ISTRIBUTED MDSplus DATABASE
PERFORMANCE WITH L INUX CLUSTERS

by
D .H . M INOR and J .R . BURRUSS

This is a prepr in t o f a paper to be presented a t
the 5 th IAEA Meet ing on Cont ro l , Data
Acqu is i t ion, and Remote Part ic ipa t ion fo r
Fus ion Research , Ju ly 12–15, 2005, Budapest ,
Hungary to be pr inted in the P roceed ings .

Work supported by
the U .S . Depar tment o f Energy under

DE-FG02-03ER83842 and
DE-FC02-04ER54698

GENERAL ATOMICS PROJEC T 30215
JULY 2005

 General Atomics Report GA–A25106 1

ABSTRACT

The staff at the DIII–D National Fusion Facility, operated for the USDOE by General
Atomics, are investigating the use of grid computing and Linux technology to improve
performance in our core data management services. We are in the process of converting
much of our functionality to cluster-based and grid-enabled software. One of the most
important pieces is a new distributed version of the MDSplus scientific data management
system that is presently used to support fusion research in over 30 countries worldwide. To
improve data handling performance, the staff is investigating the use of Linux clusters for
both data clients and servers. The new distributed capability will result in better load
balancing between these clients and servers, and more efficient use of network resources
resulting in improved support of the data analysis needs of the scientific staff.

 General Atomics Report GA–A25106 2

1. INT ROD UCTIO N

MDSplus [1] is a data acquisition and storage system. Developed jointly by the
Massachusetts Institute of Technology, the Center for Nuclear Research (Padua, Italy), and
the Los Alamos National Lab, MDSplus is the most widely used system for data
management in the magnetic fusion energy program. MDSplus stores data from an
experiment in a single, self-descriptive, hierarchical database.

MDSplus allows for access to data through either a traditional thin client or a new
distributed client. The traditional MDSplus thin client method puts more load on the server,
because the server performs all of the expression evaluation, data compression and
decompression. In fact the client does nothing but send and receive messages to and from the
server. In contrast, the distributed client performs the evaluation, data compression and
decompression instead of querying the server.

At General Atomics, we use MDSplus both for data storage and as a proxy for data
retrieval from a locally created database named PTDATA [2]. Our intention is to use
clustered Linux workstations to test the performance of distributed MDSplus for normal data
retrieval, data writing, and for proxy data retrieval of PTDATA data. As faster, clustered
Linux clients become available, it makes sense to offload work traditionally done on a single
server to the new clusters of machines. We want to load the distributed MDSplus client onto
these clusters and investigate how much it improves performance. We also want to
investigate whether it is possible to distribute data across multiple server clusters, further
decreasing the load on any one server machine, and removing another potential performance
bottleneck.

As a database, MDSplus is hierarchical. Data are organized into trees, each of which
contain nodes; much like a filesystem with directories and subdirectories, trees contain nodes
and subnodes. Trees can be linked to other trees through subnodes, but the relationship is
always hierarchical. Nodes can provide structure, or can contain data. Node data exists as
expressions; the expression language of MDSplus is known as Tree-Data Interface (TDI).

Figure 1 illustrates the traditional thin client MDSplus approach. Under thin client,
multiple client machines connect to a single MDSplus data server. Lightweight processes on
the client machines (represented here by the small dots) connect to the server, where
corresponding server processes are created (large dots). The server processes are CPU- and
memory-intensive processes which do all of the query processing and expression evaluation.
These server processes persist until the client closes its connection.

Thin client is well suited for system configurations where client machines are old, slow,
and on slower networks than the server machines. This has traditionally been the situation at
many magnetic fusion energy research institutions such as DIII–D, where client machines
have less RAM, slow, single CPUs, and are on slower networks than the server machines.
Under the thin client, expressions are evaluated by the server; the results of these expressions
are sent over the network to the client, which does very little computational work. Moreover,

 General Atomics Report GA–A25106 3

machines running the thin client do not need to have complete working versions of MDSplus
software, but instead only the bare minimum client libraries needed to connect to the server
and read data. This can be helpful in situations where disk space as well as configuration and
maintenance time are at a premium.

TREE A

TREE B

NODE

NODE NODE

NODE

NODE NODE

NODE NODE

Fig. 1. Each client connects to a single server under thin client MDSplus.

Figure 2 illustrates the new distributed client approach to MDSplus. Under distributed
client, each client process does its own expression evaluation (represented by the large dots),
and can read data from multiple servers (small dots). This takes more CPU power from each
client and puts less load on each individual server. This is better suited for faster, more
capable client machines.

CLIENT

SERVER

CLIENT CLIENT

Fig. 2. Clients read data from multiple servers under distributed MDSplus.

With distributed MDSplus, the expression itself is sent to the client, and the client does
its own expression evaluation. This difference in expression evaluation can significantly
impact overall performance in a number of ways. First, expression evaluation consumes
computational resources. If this load can be distributed over multiple machines the end user
should see better performance.

Second, when the result of the expression is much larger than the expression itself, the
transfer of the large expression result is less efficient than the transfer of the short expression.
A specific example of this is the node expression which is used to retrieve data from
PTDATA. As an expression, this takes only a few bytes. Once evaluated, this takes up
anywhere from 8 KB to hundreds of MB. Using thin client, data must go from the PTDATA
server, to the MDSplus server, then on to the client. Using distributed client, the data would
travel directly from PTDATA to the client, thus avoiding the extra hop.

 General Atomics Report GA–A25106 4

2. TEST INF RASTRUCT URE

We tested distributed MDSplus using Linux workstations already installed in several
clusters at General Atomics. In particular we utilized machines configured in a Load Sharing
Facility (LSF) cluster. General Atomics makes extensive use of LSF clusters onsite and we
hope to take advantage of the existing infrastructure in the test.

For client machines we used 12 dual-processor workstations. These workstations are
identical and each have dual 2.66 GHz Intel Xeon processors and 2 GB of RAM in each
node. These workstations are part of a large computational cluster.

We identified three dual-processor Linux workstations to serve as MDSplus data servers.
These three machines are identical, and have dual 3.06 GHz Intel Xeon processors. They
have 4 GB of RAM. These machines are also part of an LSF cluster. Both the data servers
and clients use gigabit Ethernet. All of our tests were done on our LAN, because all of the
current MDSplus activity in our organization is local.

All of the machines are running RedHat Enterprise Linux, version 3. They are fully
patched and upgraded. The clients are running MDSplus version 1.5-0. The servers are
running 1.6-2.

 General Atomics Report GA–A25106 5

3. TESTING PRO CEDU RES

We tested several database- and system-level configurations to find what bearing they
have on the two versions of MDSplus. Each set of tests were run at multiple times during the
day and night to achieve as much consistency as possible. We performed five tests which
represent common usage of the MDSplus system and two tests which are common system
“tweaks” recommended for Linux systems running databases. For this round of tests we only
did read tests to the MDSplus database. This represents a normal activity for the DIII–D
scientists.

1. Baseline: comparison of thin client and distributed client in a normal environment.

2. Math results: comparison when math is being done within node expressions.

3. Indirection: comparison when there is multi-referencing within a tree.

4. PTDATA: comparison when there is interaction with PTDATA.

5. Moderate Database Loads: comparison of performance with 6 simultaneous reads.

6. TCP adjustments: comparison when various TCP parameters are changed.

7. RAMDisk: comparison of performance when RAMDisks are used.

3.1 . BASELINE

The baseline tests were run during normal production hours, but not during Fusion
operations. This was done because it represents a middle ground – average daily use of the
machines without large spikes of demand or idle time. Our tests consisted of one-at-a-time
reads of floating point data. We used 8 MB data sizes – these are also fairly average in size.
In the simple case of a single client reading two million values of compressed floating-point
data over a local area network from a numeric node in a tree located on direct-attached
storage, there is almost no measurable difference between thin client and distributed client
performance.

TPTREAD (MB/s)

TEST THIN DIST

1-Client 8.5 8.6

3.2 . MODER ATE LOAD (S IMU LTANEOUS CLIENTS)

However, when six clients simultaneously read data, differences between thin and
distributed MDSplus become apparent. Under this scenario, distributed MDSplus
outperforms thin client by approximately 20%. This difference is most likely due to the fact
that, since thin client puts all of the work on the server while distributed client keeps the
work on the client, distributed client keeps server loads lower relative to thin client, a
difference that becomes apparent under moderate loads.

 General Atomics Report GA–A25106 6

TPTREAD (MB/s)

TEST THIN DIST

6-Client 2.8 3.3

3.3 . MATH EXPRESSIONS

The first test involved using math within node expressions. This is a very common
procedure for our researchers. Under this condition, the distributed client performed better
than the thin client. This is not surprising given that the computation is being handled on all
of the different machines, rather than on just the servers. The process becomes in many ways
“parallel,” as the computational load is shared among the different machines. The actual TDI
expression used was _data = […], sin(_data) + cos(_data) + tan(_data), where […] is the
data array of two million floating point values. Distributed performed 23% better than thin
client in this test.

TPTREAD (MB/s)

TEST THIN DIST

Math 2.0 2.5

3.4 . INDIRECTION

In the next test we introduced multi-referencing within the trees. The data node contained
not raw data, but a node reference; the subject of this node reference contained another node
reference, and so on, leading to nine levels of indirection. Distributed performed 10% better
than thin client in this test.

TPTREAD (MB/s)

TEST THIN DIST

Indirect 3.0 3.3

3.5 . COMPRESSION

Next, we examined the effect of turning off compression on the clients. This produced
some very interesting results – when compression was turned off, distributed client
performance dropped measurably, while thin client performance stayed the same. The drop
off for distributed client can be explained by its heavier reliance on the network – since data
is being shipped back and forth between the clients and the servers, the uncompressed data
moved at a much slower rate, this affecting the performance of the system as a whole.

TPTREAD (MB/s)

TEST THIN DIST

Uncompressed 8.3 4.6

 General Atomics Report GA–A25106 7

3.6 . PTDATA

In the special case of the PTDATA proxy — that is, reading data from a numeric node
containing a ptdata2() TDI function, which points to data in the PTDATA database to be read
— distributed MDSplus outperformed thin client by 16%. This is because under thin client,
the MDSplus server first retrieves the data from PTDATA, then sends that data to the client,
resulting in an extra network hop as the data passes from the originating database, through
the MDSplus server, to the client. Under distributed client, the ptdata2() TDI expression is
sent to the client, which then directly reads the data from the PTDATA database, thus
avoiding the extra network hop.

3.7 . SYSTEM CHANGE – TCP PARAMETER CHANGES

One thing that is commonly done to systems running database software is to modify the
network settings. This allows the system to have the maximum number of reads and rights
occur during a given time. We increased the maximum TCP send and receive buffers and the
memory reserved for TCP buffers also.

These settings are all commonly recommended settings for database-serving systems.
Under these settings distributed client outperformed thin yet again. Interestingly however,
these settings actually caused performance to degrade in both distributed and thin client. We
will need to conduct further testing to determine what caused this result.

TPTREAD (MB/s)

TEST THIN DIST

tcp wind 2.4 3.1

 General Atomics Report GA–A25106 8

4. DISC USSION OF SYSTEM TESTIN G

Clearly the distributed client came out on top of nearly all of the tests. The only one
where it didn’t best the thin client was when compression was turned off. This would be an
unusual thing to do, and would likely only be done if there were some uncommon
circumstances which demanded it. The improved performance of the distributed client has
important ramifications for future MDSplus deployment at DIII–D: because the clustered
computing model is now prevalent (and is projected to be so for the foreseeable future), it
makes sense for us to move away from the thin client, and its reliance on monolithic server
architecture. As more and more fast Linux boxes are added to our current infrastructure, the
overall performance of MDSplus, using distributed client, should only improve.

 General Atomics Report GA–A25106 9

5. OBSTACLES, OD DITIES AND F UTU RE DIRECTIO NS

For budgetary reasons, we changed the study from an initial focus on MDSplus server
performance to client performance, using a number of distributed clients running on clustered
workstations. This proved to be a blessing in disguise, as it allowed us to test using an real-
world infrastructure and giving us results that we can use for future planning.

Running tests on real-world equipment of course involves its own set of problems of
course. Even though our results are enlightening for our particular environment, it was
difficult at times to eliminate extraneous factors. The servers and clients we were using were
simultaneously being used by researchers in the course of their daily work. This means that
load (cpu and network) on the machines was not always consistent. In order to get around
this as much as possible we ran multiple tests for every scenario to filter out the noise as
much as possible.

We ran several other tests which provided us with surprising results. The most surprising
was a test using RAMDisks. A common system tweak is to load volatile data into
RAMDisks. A RAMDisk is a piece of system RAM which has been allocated to perform as a
disk partition. Data reads and writes using RAMDisks are much faster than on normal hard
disks. For our tests we created RAMDisks on the server machines and loaded the MDSplus
trees on to them. Surprisingly however performance suffered from this setup. This was the
case for both distributed and thin clients. Further investigation is needed to find why we saw
this performance decrease. Also, as stated above, changing the size of the TCP window sizes
caused a surprising performance degradation. This is also something requiring further study.

There are several areas of testing that need to be done for the distributed client. The tests
for this paper were all read tests. The next set of test will be write tests. When running the
DIII–D experiment, there is a large amount of data being written into MDSplus. A similar
battery of tests should be done simulating this procedure.

It would also be enlightening to run tests using a WAN. This would be useful to see its
implications for collaborators. It also would provide useful information for future, large-scale
fusion facilities which might have computing resources spread across multiple locations.

 General Atomics Report GA–A25106 10

ACKNOWLEDG MENT

This work was supported by the U.S. Department of Energy under DE-FG02-03ER83842
and DE-FC02-04ER54698.

 General Atomics Report GA–A25106 11

REFERENCES

[1] T.W. Fredian and J.A. Stillerman, MDSplus: Current Developments and Future
Directions, Fusion Engin. Design 60 (2002) 229.

[2] B.B. McHarg, Access to DIII–D Data Located in Multiple Files and Multiple Locations,
Proc. 15th Symp. on Fusion Engineering, 1993, p. 123.

