
QTYUIOP

GA–A25048

GYRO PERFORMANCE ON
A VARIETY OF MPP SYSTEMS

by
J. CANDY

MAY 2005

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

QTYUIOP

GA–A25048

GYRO PERFORMANCE ON
A VARIETY OF MPP SYSTEMS

by
J. CANDY

This is a preprint of a paper to be presented at
Cray User Group Ann. Tech. Conference (CUG
2005), Albuquerque, New Mexico, May 16–19, 2005,
and to be published in the Proceedings.

Work supported by
the U.S. Department of Energy

under DE-FG03-95ER54309

GENERAL ATOMICS PROJECT 03726
MAY 2005

GYRO Performance on a Variety of MPP Systems

Jeff Candy, General Atomics and Mark Fahey, ORNL

ABSTRACT: GYRO is a code used for the direct numerical simulation of plasma microturbu-
lence. It is the most physically comprehensive of all such codes, worldwide. It has been ported to
a variety of modern MPP platforms including a number of commodity clusters, IBM SPs and the
Cray X1. The performance and scaling of GYRO on many of these systems has been previously
documented, and exhaustive testing and performance analysis has already been the subject of
numerous presentations and publications. Although we briefly describe the mathematical struc-
ture of the equations solved by GYRO, we prefer to focus on the data layout and redistribution
algorithms. Performance comparisons of different platforms are detailed, with emphasis on a
section of code which requires very large communication bandwidth. In addition, we discuss the
performance of a recently implemented FFT algorithm for the evaluation of the nonlinear terms.
This algorithm gives a performance improvement for very large grid sizes. However, because
the FFT vector length very rarely exceeds 192 in practice, one never operates the code in a
regime where the full aymptotic dominance of the FFT over the original direct method is realized.

KEYWORDS: gyrokinetic, plasma, fusion, AMD, Infiniband, IBM, X1, FFT.

1 Introduction

The most promising and aggressively studied concept for
power production by fusion reactions is the tokamak. At
the present time, magnetic fusion energy research has
reached the point where construction of a tokamak burn-
ing plasma facility such as the proposed ITER experiment
[1] is prudent. The design of a next-step device like ITER
calls for thermonuclear heating to balance the transport
and radiation losses for periods of 103 seconds or more.
However, despite the advances made in the understanding
and control of tokamak plasmas, some uncertainties remain
in reliably predicting confinement properties and perfor-
mance of next-generation ITER-scale devices. Within the
worldwide fusion community, it is widely agreed that the
so-called gyrokinetic-Maxwell (GKM) equations [2, 3] pro-
vide a solid foundation for the first-principles calculation of
turbulent tokamak heat and particle transport. For years,
the numerical solution of the nonlinear GKM equations
has been a computational physics “Grand Challenge”. De-
velopment of GYRO was partially funded by the Plasma
Microturbulence Project, a fusion SciDAC project.

The code, written primarily in Fortran 90, solves the
nonlinear GKM equations for core ions, electrons and any
number of plasma impurity species. Electromagnetic or

reduced electrostatic simulations are possible. The com-
putational domain can be radially global, with input data
taken from an experimental database, or radially local, in
order to accurately study isolated parametric effects. Both
partial and full torus simulations are possible, although the
latter is rarely (if ever) necessary to obtain a converged
result. GYRO uses a five-dimensional Eulerian grid and
advances the system in time using a second-order, implicit-
explicit (IMEX) Runge-Kutta (RK) integrator [4]. There
is also an option to use a fourth-order explicit Runge-Kutta
time advance when one of the species responds adiabati-
cally (an approximation). In recent years, the Eulerian
approach has proven to be more successful than straight-
forward Lagrangian (or particle-in-cell) discretizations, in
particular because the particle noise inherent to the lat-
ter makes long-time simulation virtually impossible using
a reasonable number of particles. This issue is presently
the subject of great controversy.

GYRO has been ported to a variety of modern MPP
platforms including a number of commodity clusters, IBM
SPs and the Cray X1. It has shown good scalability on
all these platforms. The GYRO users group (comprised of
both students and researchers) continues to evolve. With
this evolution comes ever greater expectations for code
documentation, robustness and ease-of-use.

GENERAL ATOMICS REPORT GA-A25048 1

GYRO Performance J. Candy

The performance and scaling of GYRO on MPP sys-
tems has been previously documented [5], and is the sub-
ject of ongoing research. In the present report, we focus
on

1. the multidimensional grid layout, and performance
of the associated data redistribution algorithms; and

2. the performance of an alternative scheme (FFT-
based) for evaluation of the nonlinear convolution
(Poisson bracket).

The remainder of the paper is organized as follows.
Section 2 gives a heuristic overview of the gyrokinetic
model [2], describes the connection of the physical vari-
ables to gridpoints, and outlines the basic grid distribu-
tion scheme. Section 3 discusses numerical results, includ-
ing various performance measurements. Section 4 lists the
essential code used in the GYRO communication calls. Fi-
nally, a brief summary is given.

2 Gyrokinetic model overview

2.1 Form of the equations

The GKM equations couple the gyrocenter distribution, f ,
to the electromagnetic fields, Φ:

∂f

∂t
= Laf + Lb〈Φ〉 + {f, 〈Φ〉} (1)

FΦ =

∫ ∫
dv1 dv2 〈f〉 (2)

Lb, Lb and F are linear operators, and 〈·〉 is an op-
erator which takes the average along a particle gyro-
orbit. Strictly speaking, f measures the deviation from
a Maxwellian background. For global simulations, a linear
adaptive source technique [6] is used to inhibit the evolu-
tion of f and Φ on equilibrium scales. The sole nonlin-
earity, which has a Poisson bracket structure, appears in
the gyrokinetic equation. The function f(r, v1, v2) is dis-
cretized over a 5-dimensional grid (three spatial and two
velocity coordinates), while the 3-dimensional electromag-
netic fields Φ(r) = [φ,A‖] are independent of velocity. Here
φ and A‖ are the electrostatic and electromagnetic poten-
tials, respectively. In order to obtain Eq. (1), one has aver-
aged over the fast orbital motion (gyro-orbit) to eliminate
the third velocity-space dimension (gyro-angle). However,
this so-called gyro-averaging operation introduces nonlocal
spatial operators, F and 〈·〉, perpendicular to the magnetic
field.

We remark that simulations normally reach a statis-
tical steady state on a timescale much shorter than an

energy confinement time. In practice, simulations are well
into the steady-state regime after about 50,000 timesteps.

2.2 Grid indexing

Eulerian schemes for solving the GKM equations evolve the
gyro-center distribution function f(r, τ, ntor, λ, E), where
r is the plasma minor radius, τ is the orbit time (a
parametrization of the poloidal angle), ntor is the toroidal
mode number (a linear quantum number), λ is the cosine
of the pitch angle and E is the energy. Upon discretization
of all differential and integral operators, we solve difference
equations for the quantities f(i, j, n, k, e), with

i = 1, 2, . . . , Ni (3)

j = 1, 2, . . . , Nj (4)

n = 1, 2, . . . , Nn (5)

k = 1, 2, . . . , Nk (6)

e = 1, 2, . . . , Ne (7)

Note that in general there is also a species index, but in
the present work we do not use it for data distribution.

2.3 Grid distribution and redistribution

While current supercomputers offer the promise of multi-
Tflop/s performance, the newest and most powerful of
these are based on a distributed-memory architecture and
require efficient data distribution schemes to achieve good
parallel performance. The prototype object to be dis-
tributed in memory evenly across the entire processor
space is the function f(i, j, n, k, e). The distribution of
an index across processors is incompatible, however, with
the evaluation of operators on that index. For example, a
derivative in r requires that all i should be on a processor.
Even more complicated is the requirement that some oper-
ators require that more than one index be simultaneously
on-processor. For example, the nonlinear convolution re-
quires both i and n to be on-processor. A summary of
distribution requirements is given in Table 1.

Stage On-processor indices

Linear with field solve i, j
Pitch-angle scattering j, k

Energy diffusion e
Nonlinear i, n

Table 1: Distribution requirements for different code stages
(i.e., evaluation of different operators).

The obvious tactic is to change the distribution
scheme to evaluate different operators. We will describe

2 GENERAL ATOMICS REPORT GA-A25048

GYRO Performance J. Candy

a algorithm with uses not only the global communicator
MPI COMM WORLD for the totality of processors, but two new
communicators, COMM1 and COMM2 which define processor
rows and columns.

2.3.1 Base distribution scheme

The base distribution scheme is that used for the linear

step with field solve

BASE: f([n], {e, k}, i, j) (8)

{e, k}1 {e, k}2 {e, k}3 {e, k}4

{e, k}5 {e, k}6 {e, k}7

n1 i, j i, j i, j i, j

n2 i, j i, j i, j i, j

n3 i, j i, j i, j i, j

n4 i, j i, j i, j i, j

Figure 1: Base grid distribution scheme, with all i, j on
processor, n distributed along rows, and e, k distributed
along columns. Data redistribution will occur only only
along rows or columns, thus limiting the all-to-all exchange
size.

Fig. 1 illustrates this distribution strategy in the case of 16
processors – with 4 processors in each of the 4 COMM1 sub-
groups, and 4 processors in each of the 4 COMM2 subgroups.
Here, COMM1 links all columns of a given row (horizontal
arrows), and COMM2 links rows of a given column (vertical
arrows). The curly braces indicate a one-dimensional array
of stacked indices

{e, k}p = p with p = 1, 2, . . . , Ne Nk (9)

where

(e − 1) =
p − 1

Nk

and k − 1 = (p − 1) mod Nk (10)

The indices {e, k} are distributed along processor columns,
the [n] are distributed along rows, and i and j are stored

on-processor. Note that in the general case, many stacked
{e, k} indices will appear in each column. For the 16-
processor case shown in Fig. 1, we would have {e, k}p for
p = 1, 5, 9, . . . in column 1, and so on. With regard to
columns, however, we make an important simplifying as-
sumption and consider the number of rows to be exactly
equal to Nn. This restriction suits our immediate purposes
well enough, and generalization to more than one n per row
is reasonably straightforward.

2.3.2 3-index row transpose

We can define a generalized 3-index transpose operator, R,
which acts individually on processor rows

R : {e, k}, i −→ {i, e}, k (11)

The omitted index, j, is left on-processor. This operation
is illustrated schematically in Fig. 2. Because there are
three indices, three applications of the operator R yields
the identity:

R3 : {e, k}, i = R2 : {i, e}, k (12)

= R : {k, i}, e (13)

= {e, k}, i (14)

{e, k}1 {e, k}2 {e, k}3 {e, k}4

{e, k}5 {e, k}6 {e, k}7

n1 i, j i, j i, j i, j

n1 k, j k, j k, j k, j

{i, e}1 {i, e}2 {i, e}3 {i, e}4

{i, e}5 {i, e}6

Figure 2: Schematic description of a row exchange opera-
tion. Before the exchange, all i, j are on-processor. After
the exchange, all k, j are on-processor.

Pointers marking the location of data after a trans-
pose are computed and stored in a transpose initialization
routine. A formal study of the mathematical properties of

GENERAL ATOMICS REPORT GA-A25048 3

GYRO Performance J. Candy

this transpose operation might prove enlightening. Indeed,
the creation of standard libraries for the permutation of ar-
ray indices as described in the report would be of enormous
benefit for the plasma microturbulence community.

2.3.3 2-index column transpose

Figure 3 shows the transpose operation on COMM2 required
to place all values of n on-processor and distribute the j
index. This exchange must accomodate Nj ≥ Nn. So,
generally, in row i we would have ji, ji+4, Note, how-
ever, that load balancing will be less than optimal un-
less Nj is an integer multiple of Nn. A particularly inef-
ficient case is Nn > Nj (many toroidal modes with low
poloidal resolution), which fortunately does not occur of-
ten in practice. Production simulation almost exclusively
use Nn = (8, 12, 16) and Nj = (20, 28, 32).

In the mathematical sense, the n ↔ j exchange is a
special case of the COMM1 transpose. For greater efficiency,
we implement this 2-index transpose separately.

{e, k}1 {e, k}1

{e, k}5 {e, k}5

n1 i, j i, n j1, j5

n2 i, j i, n j2, j6

n3 i, j i, n j3, j7

n4 i, j i, n j4

Figure 3: Schematic description of a column exchange op-
eration. Before the exchange, all i, j are on-processor. Af-
ter the exchange, all i, n are on-processor.

2.3.4 Index distribution summary

A summary of the f -distribution in each stage in given in
Table 2.

Stage Distribution

Linear with field solve f ([n], {e, k}, i, j)
Pitch-angle scattering f ([n], {i, e}, k, j)

Energy diffusion f ([n], {k, i}, e, j)
Nonlinear f ([j], {e, k}, i, n)

Table 2: Distributions of f in each stage.

A partial code listing for the row and column trans-
pose operations is given in the Section 4.

2.4 Discretization schemes

We briefly sketch the type of discretization scheme used in
each dimension. A detailed treatment is beyond the scope
of the present paper.

• r → i (radius): linear advective derivatives on f are
treated with an upwind differences, whereas deriva-
tives on fields are treated with centered differences.
The nonlocal operators F and 〈·〉 are approximated
using a (banded) pseudospectral technique. The or-
der of all discretizations is adjustable at run-time.

• τ → j (poloidal angle): for f , there is no fixed grid
in poloidal angle, θ. Instead, the transformation

v‖(r, λ, θ)

R0q(r)

∂

∂θ
→ Ω(r, λ)

∂

∂τ
(15)

is used to eliminate the singularity at bounce points,
v‖(θ) = 0. Here, v‖ is the velocity parallel along the
magnetic field, R0 is the major radius of the torus,
and q is the so-called safety factor. Then, an upwind
scheme in τ is used to discretize ∂f/∂τ . The use of a
τ -grid (leading to a different set of points in θ for ev-
ery value of λ) for the GK equation dictates that the
Maxwell equations are solved by expansion of fields
in complex finite-elements: φ(ri, θ) =

∑
m F i

m(θ).
The F i

m satisfy the a complex phase condition.

• ntor → n (toroidal angle): the toroidal direction (re-
ally, the direction perpendicular to both the radius,
r, and to the magnetic field) is treated in a fully spec-
tral manner. Note that simulations need not cover an
entire toroidal circuit (0, 2π]. In fact, it is normally
most efficient to cover a partial torus; for example:
ntor = 0, 10, 20,

• (λ, ε) → (k, e) (velocity-space): A transformation
property under integration of velocity-space integrals
over θ is used to recast the velocity-space integration.
Then, in both ε and λ, an exact Gauss-Legendre
quadrature scheme is numerically generated (by non-
linear root-finding) at run-time. This is different at
each radius and for different plasma equilibria.

4 GENERAL ATOMICS REPORT GA-A25048

GYRO Performance J. Candy

• nonlinearity: The nonlinear Poisson bracket is
evaluated with a conservative difference-spectral ana-
logue of the Arakawa method. This scheme ensures
exact conservation of density and generalized entropy
at vanishing time step (independent of grid resolu-
tion).

• collisions: Collisions are represented by a second-
order diffusive-type operator in λ. This operator is
split from the collisionless problem and a irregular-
grid generalization of the Crank-Nicholson method is
used.

• time-advance: A 2nd-order IMEX RK scheme
is used, with the electron parallel motion (∂/∂θ)
treated implicitly. This is exceptionally complicated
due to the use of a τ -grid, as well as the presence of
the fields in the advection. However, the implicitness
is crucial for the elimination of a numerical instabil-
ity connected with pathological electrostatic Alfvén
waves.

3 GYRO Performance

In this section we describe the performance of GYRO on
five separate platforms. As mentioned previously, GYRO
has been ported to a variety of modern MPP systems in-
cluding a number of commodity clusters, IBM SPs, an SGI
Altix, and the ORNL Cray X1. Since the developers desire
portable code rather highly, only a single source is main-
tained. In a few exceptional cases, there are platform-
specific routines (FFT, MPI-IO). In general, a port to a
new architecture requires little more than the creation
of a new makefile. This is mentioned now because al-
though the single-source philosophy has made GYRO a
very portable code, the single-source requirement has the
consequence of preventing some machine-specific code op-
timizations which adversely affect performance on other
architectures. However, this requirement does not prevent
machine specific optimizations altogether. For example,
GYRO was modified (making code vector friendly, adding
directives) to eliminate bottlenecks on the X1. However,
these changes were minimal and in some cases simultane-
ously beneficial on other architectures. In porting to the
X1, the code modifications were largely the addition of di-
rectives, but there were selected instances of rank promo-
tion/demotion, and an instance of “pushing” a loop down
into a subroutine call.

We now summarize the hardware features of the five
platforms used for GYRO performance testing. The reader
should note that some of this data has been previously re-
ported [5].

1. AMD Opteron-IB cluster
The General Atomics AMD Opteron cluster with In-
finiband interconnect has 57 2-way Opteron 250 (2.4
Ghz) nodes running in 64-bit mode. The peak perfor-
mance of a single processor is 2.4×2 = 4.8 GFlops/s.
GYRO was compiled using version 6.0 of pgf90. The
machine uses the mvapich 0.9.5 implementation of
MPI over Infiniband. The network topology is that
of three subclusters, each serviced by a 24-port Infini-
band switches. These switches are not connected
to one another. For this reason, the maximum job
size is 48 processors on subcluster 1, 48 on subclus-
ter 2 and 18 on subcluster 3. The entire cluster is
serviced by a single NFS filesystem over gigabit eth-
ernet.

2. IBM Nighthawk II (Power3) cluster
The IBM Nighthawk II cluster with Colony intercon-
nect has 416 16-way Power3 (375 Mhz) nodes. The
peak performance of a Power3 processor is 375×4 =
1.5 GFlops/s. GYRO was compiled using ESSL 3.3
and XL Fortran 8.1. The machine has parallel envi-
ronment 3.2 and AIX 5.1. It is managed by NERSC
and represents the workhorse platform for the US
fusion program.

3. IBM p690 (Power4) cluster
The IBM p690 cluster with Federation interconnect
has 27 32-way Power4 (1.3 GHz) nodes. The peak
rate of each node is 32 × 1.3 × 4 = 166.4 GFlops/s.
GYRO was built using ESSL 4.1 and XL Fortran 8.1.
The machine, managed by ORNL CCS, has parallel
environment 4.1 and AIX 5.2.

4. SGI Altix
The SGI Altix is a single-system image running
Linux with 256 Itanium 2 processors (1.5 GHz). The
machine peak rate is 256× 1.5× 4 = 1536 GFlops/s.
GYRO was built using the Intel Fortran 8.0 compiler
and SGI’s SCSL library. This system is managed by
ORNL CCS.

5. Cray X1
The Cray X1 is also a single-system image of 504 mul-
tistreaming processors. Each processor is capable of
12.8 Gflops/s, and thus the peak of the machine is
6451.2 Gflops/s. GYRO was built using Program-
ming Environment 5.2.0.2 and mpt 2.3.0.4. The OS
was Unicos m/p 2.4.17. This system is managed by
ORNL CCS.

GENERAL ATOMICS REPORT GA-A25048 5

GYRO Performance J. Candy

3.1 Waltz Standard Case benchmark

For an overall system comparison, we consider results from
a benchmark based on the Waltz Standard Case parame-
ters [7, 8]. This case, which is meant to be representative
of the core plasma in a medium-sized tokamak, includes ki-
netic electron dynamics and collisions. The numerical grid
resolution used for this benchmark is typical of that used
in production runs. It represents, roughly, the minimum
grid size required to obtain physically accurate results. We
could have improved the scalability on all platforms by
moving to a finer grid, but felt that results for a grid of
typical production size are of greater practical value. This
benchmark exercises most of the code capability, includ-
ing the pitch-angle collision operator, for which there have
been historical performance problems on the X1.

Figure 4 shows the results of running the aforemen-
tioned benchmark on each platform.

16 32 64 128 256 512
number of processors

0.5

1.0

2.0

4.0

8.0

16.0

32.0

ra
te

 (n
or

m
al

iz
ed

 to
 3

2
P

ow
er

3)

IBM Power3 (seaborg)

IBM Power4

SGI Altix

Cray X1

Opteron 250 IB

Figure 4: Comparison of overall performance on fixed-
problem-size simulations of the Waltz Standard Case. The
vertical axis measures the execution rate, normalized to
the execution rate on 32 Power3 processors. The scaling
is very good on all platforms, with the X1 a clear win-
ner in per-processor performance. The dotted line on the
Opteron-IB curve represents the expected scaling if a single
switch were to cover the whole cluster.

While some of the data in Fig. 4 has been presented
previously [5], we have updated the plot to show results for

the recently-installed General Atomics Opteron cluster.

3.2 Column-transpose performance

Next, we run a simplified benchmark case in order to as-
sess the performance of the column transpose (required
for the Poisson bracket evaluation) on three of the pre-
vious platforms (IBM, Cray and Opteron-IB) for a fixed
problem size. The results, shown in Fig. 5, illustrate the
excellent scalability with processor count achieved on the
Cray and Opteron-IB systems. The scalability of the IBM
Power3 system on this test is somewhat less impressive.
With regard to actual communication time (rather than
scalability) the Cray X1 shows itself to be nearly a factor
of 10 faster than the Opteron-Infiniband system. The in-
terconnect performance of the Cray X1 is truly impressive.

8 16 32 64
Number of processors

0.004

0.040

0.400

C
om

m
un

ic
at

io
n

tim
e

(s
)

IBM Power3 (seaborg)

Cray X1

Opteron 250 IB

Figure 5: Absolute communication time for forward plus
reverse column transpose. The Cray X1 is by far the best
performer, with the Opteron-IB (infiniband) system a dis-
tant second. The IBM Power3 comes in last, with marginal
network scalability and lowest total throughput. Dotted
lines show the theoretical 1/nproc trend, normalized to
unity at 8-processors.

At these modest processor counts (the range 32 to
64 is representative of real production simulations), where
lack of scalabilty is not yet a show-stopper, it is interesting
to compare the relative fraction of time spent in communi-
cation. Figure 6 shows the communication-to-computation

GENERAL ATOMICS REPORT GA-A25048 6

GYRO Performance J. Candy

ratio for the same scenario as considered in Fig. 5. The
salient point is that the AMD and IBM are about equally
well-balanced, both experiencing a substantial communi-
cation bottleneck. The X1 is the only platform for which
the normally bandwidth-hungry GYRO code does not see
a significant communication overhead.

8 16 32 64
Number of processors

0.125

0.250

0.500

1.000

2.000

(c
om

m
un

ic
at

io
n

tim
e)

/(c
om

pu
te

 ti
m

e)

IBM Power3 (seaborg)

Cray X1

Opteron 250 IB

Figure 6: Ratio of communication time to computation
time in the evaluation of the nonlinear term in Eq. (1). The
ratio here is a measure of the communication overhead on
a given platform. By this measure, the communication-to-
computation ratios are equally well-balanced on the IBM
and AMD systems. In some sense, the results shows that
the Cray interconnect is over-engineered!

3.3 Direct vs. FFT methods

On these same three platforms, we also wish to compare
the relative performance of the direct and FFT methods for
evaluating the Poisson bracket nonlinearity. Both methods
yield, in principle, exactly the same result for the bracket.
In practice, there is a small difference due to round-off er-
ror. Each system uses a different FFT library: the AMD
uses FFTW 2.1.5, the IBM uses ESSL, and the Cray uses
LibSci.

Fig. 7 compares the direct and FFT methods for an
increasing problem size. Here, we have set the number
of complex modes equal to the number of processors. Be-
cause of dealiasing, the FFT length in each case is 3Nn

(three times the number of modes). Because the number
of processors used must be an integer multiple of Nn, we
use Nn processors for Nn modes.

The results have a relatively straightforward interpre-
tation: the direct method (solid curve) is preferred over the
FFT method (dotted curve) at

• 16 modes on the IBM,

• 32 modes on the AMD,

• 48 modes on the X1.

One unfortunate feature of this test is that the
poloidal grid dimension is rather small: Nj = 20. There-
fore, as discussed in Section 2, the distribution scheme be-
comes poorly load balanced for Nn > 20. We can remove
this artifact by choosing Nj = 64 (and halving Ne) and
rerunning the tests. We also plot only Nn = (16, 32, 64)
so that Nj is evenly divisible by Nn. This rectified data is
shown in Fig. 8 for the Cray and IBM.

8 16 32 64
Number of processors = Nn

0.1

1.0

10.0
B

ra
ck

et
 ti

m
e

(s
)

IBM Power3 (seaborg)

Cray X1

Opteron 250 IB

Figure 7: Comparison of direct and FFT schemes for
the nonlinear bracket (convolution) for problem size which
grows in proportion to the number of Fourier modes, Nn.
The FFT length is three times the number of processors
(or three time the number of modes). The direct method
(solid curves) is preferred over the FFT method (dotted
curves) at 16 modes on the IBM, 32 modes on the AMD,
and 48 modes on the X1. Here, Nj = 20.

GENERAL ATOMICS REPORT GA-A25048 7

GYRO Performance J. Candy

16 32 64
Number of processors = Nn

0.1

1.0

10.0

B
ra

ck
et

 ti
m

e
(s

)

IBM Power3 (seaborg)

Cray X1

Figure 8: Comparison of direct and FFT schemes for
the nonlinear bracket (convolution) for problem size which
grows in proportion to the number of Fourier modes. This
case has Nj = 64 to ensure uniform load-balancing. The
dashed lines indicate the scaling for an N 2

n operation count
(divided into Nn processors).

The dashed lines in the figure indicate the theoret-
ical Nn-scaling, which reflects an overall N 2

n scaling of
the direct method. Evidently, for typical grid sizes, the
FFT length is never long enough to achieve the asymptotic
Nn log Nn scaling of the FFT. How these results change
with increasing radial grid size (the radial grid was rel-
atively small for this test case) needs further study. Al-
though at present simulations are rarely large enough to
warrant the FFT method, we expect that as simulations
grow in size and complexity, its usage will become more
frequent.

4 Code listing

4.1 Row Transpose

subroutine fTRANSP_DO(g,gT)

use fTRANSP_GLOBALS

implicit none

complex, intent(in), &

dimension(n_ij_loc,n_k) :: g

complex, intent(inout), &

dimension(n_jk_loc,n_i) :: gT

include ’mpif.h’

! Sort g into packages to be sent to each

! processor: q_send(:,i_recv)

s = 0

p_ij_loc = 0

do p_ij=1+i_proc,n_ij,n_proc

j = j_ij(p_ij)

p_ij_loc = p_ij_loc+1

do k=1,n_k

p_jk = jk(j,k)

i_recv = modulo(p_jk-1,n_proc)

s(i_recv) = s(i_recv)+1

q_send(s(i_recv),i_recv) = g(p_ij_loc,k)

enddo ! k

enddo ! p_ij

! Do all-to-all exchange of q_send

! into q_recv

call MPI_ALLTOALL(q_send, &

s_dim, &

MPI_DOUBLE_COMPLEX, &

q_recv, &

s_dim, &

MPI_DOUBLE_COMPLEX, &

TRANSP_COMM, &

i_err)

! Build "transposed" g (gT) from packages

! sent by all other processors.

do i_from=0,n_proc-1

do s0=1,s_dim

i = i_map(s0,i_from)

p_jk_loc = p_jk_loc_map(s0,i_from)

if (i > 0 .and. p_jk_loc > 0) then

gT(p_jk_loc,i) = q_recv(s0,i_from)

endif

enddo

enddo

end subroutine fTRANSP_DO

8 GENERAL ATOMICS REPORT GA-A25048

GYRO Performance J. Candy

4.2 Column Transpose

subroutine fSSUB(x_IN,xt)

use SSUB_private

!---

implicit none

!

complex, intent(in), &

dimension(nv1,nv2,nj) :: x_IN

complex, dimension(nv1,nv2,nn*jsplit) :: x

complex, intent(inout), &

dimension(nv1,nv2,jsplit,nn) :: xt

!---

include ’mpif.h’

do j=1,nj

x(:,:,j) = x_IN(:,:,j)

enddo

do j=nj+1,nn*jsplit

x(:,:,j) = (0.0,0.0)

enddo

do j=1,jsplit

j1 = 1+(j-1)*nn

j2 = j1+nn-1

call MPI_ALLTOALL(x(:,:,j1:j2), &

nv1*nv2, &

MPI_DOUBLE_COMPLEX, &

xt(:,:,j,:), &

nv1*nv2, &

MPI_DOUBLE_COMPLEX, &

SSUB_COMM, &

i_err)

enddo

end subroutine fSSUB

Summary

We have outlined the form of the equations used for mas-
sively parallel gyrokinetic simulations, and an array distri-
bution/redistribution scheme appropriate for the Eulerian
solution of said equations. An analysis of the performance
of these generalized transpose routines shows good com-
munication scalability at fixed problem size on the slowest
(IBM Power3) and fastest (Cray X1) systems. Because
data is normally (but not always) distributed in such a
way as to maintain perfect load balancing, the overall code
scalability is very good. We have also made a first attempt

to measure the relative performance of an alternative FFT
scheme for evaluating the nonlinear terms in the GKM
equations. Rough indications of the crossover point on
each computer as a function of Nn have been given.

Acknowledgements

This work was supported by U.S. Department of Energy
Grant DE-FG03-95ER54309, and also by the Office of
Mathematical, Information, and Computational Sciences
Division, Office of Science, U.S. Department of Energy un-
der Contract No. DE-AC05-00OR22725 with UT-Battelle,
LLC. Accordingly, the U.S. Government retains a non-
exclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do
so, for U.S. Government purposes.

About the Authors

Jeff Candy is a Principal Scientist in the Energy Group
at General Atomics. Jeff obtained his Ph.D. in physics
from UCSD under the supervision of the late M.N.
Rosenbluth. He can be reached at General Atomics,
P.O. Box 85608, San Diego, CA 92186-5608, E-Mail:
candy@fusion.gat.com.

Mark R. Fahey is a senior Scientific Application Analyst
in the Center for Computational Sciences (CCS) at Oak
Ridge National Laboratory. He is the current CUG X1-
Users SIG chair. Mark has a Ph.D. in mathematics from
the University of Kentucky. He can be reached at Oak
Ridge National Laboratory, P.O. Box 2008 MS6008, Oak
Ridge, TN 37831-6008, E-Mail: faheymr@ornl.gov.

References

[1] ITER Physics Basis Editors. Nucl. Fusion 39, 2175
(1999).

[2] T. Antonsen and B. Lane. Phys. Fluids 23, 1205
(1980).

[3] M. Kotschenreuther, G. Rewoldt, and W.M. Tang.
Comput. Phys. Commun. 88, 128 (1995).

[4] L. Pareschi and G. Russo. in Hyperbolic problems: The-
ory, Numerics, Applications. Springer, (2002).

[5] M.R. Fahey and J. Candy. in ACM/IEEE Proceedings
of SC2004: High Performance Computing, Networking
and Storage (Pittsburgh, PA), (2004).

GENERAL ATOMICS REPORT GA-A25048 9

GYRO Performance J. Candy

[6] R.E. Waltz, J. Candy, and M.N. Rosenbluth. Phys.
Plasmas 9, 1938 (2002).

[7] R.E. Waltz, G.R. Kerbel, and J. Milovich. Phys. Plas-

mas 1, 2229 (1994).

[8] J. Candy and R.E. Waltz. J. Comput. Phys. 186, 545
(2003).

GENERAL ATOMICS REPORT GA-A25048 10

	Untitled

