DIVIMP MODELING OF THE TOROIDALLY-SYMMETRICAL INJECTION OF ¹³CH₄ INTO THE UPPER SOL OF DIII–D

by
A.G. MCLEAN, J.D. ELDER, P.C. STANGEBY,
S.L. ALLEN, N.H. BROOKS, M.E FENSTERMACHER,
M. GROTH, S. LISGO, A. NAGY, W.R. WAMPLER,
J.G. WATKINS, W.P. WEST, and D.G. WHYTE

MAY 2004

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DIVIMP MODELING OF THE TOROIDALLY-SYMMETRICAL INJECTION OF ¹³CH₄ INTO THE UPPER SOL OF DIII–D

A.G. MCLEAN, J.D. ELDER, P.C. STANGEBY, S.L. ALLEN, N.H. BROOKS, M.E FENSTERMACHER, M. GROTH, S. LISGO, A. NAGY, W.R. WAMPLER, J.G. WATKINS, W.P. WEST, and D.G. WHYTE

This is a preprint of a paper to be presented at the 16th International Conference on Plasma Surface Interactions, Portland, Maine, May 24-28, 2004, and to be printed in the *Proceedings.*

EUniversity of Toronto Institute for Aerospace Studies, Toronto, Ontario, Canada SLawrence Livermore National Laboratory, Livermore, California Princeton Plasma Physics Laboratory, Princeton, New Jersey †Sandia National Laboratory, Arizona

*University of Wisconsin – Madison

The authors would like to acknowledge the support of a Collaborative Research Opportunities Grant from the Natural Sciences and Engineering Research Council of Canada and the work supported by U.S. Department of Energy under DE-FC02-04ER54698, W-7405-ENG-48, DE-AC02-76CH03073, DE-AC04-94AL85000, and DE-FG02-92ER54139

GENERAL ATOMICS PROJECT 30200 MAY 2004

DIVIMP modeling of the toroidally-symmetrical injection of ¹³CH₄ into the upper SOL of DIII–D

A.G. McLean, J.D. Elder, P.C. Stangeby, S.L. Allen, N.H. Brooks, M.E Fenstermacher, M. Groth, S. Lisgo, A. Nagy, W.R. Wampler, J.G. Watkins, W.P. West, D.G. Whyte M.R. Wampler, M.G. Watkins, M.P. West, D.G. Whyte M.R. Wampler, M.R

Abstract. As part of a study of carbon-tritium co-deposition, we carried out an experiment on DIII–D involving a toroidally symmetric injection of 13 CH₄ at the top of a LSN discharge. A Monte Carlo code, DIVIMP-HC, which includes molecular breakup of hydrocarbons, was used to model the region near the puff. The interpretive analysis indicates a parallel flow in the SOL of $M_{\parallel} \sim 0.4$ directed toward the inner divertor. The CH₄ is ionized in the periphery of the SOL and so the particle confinement time, τ_{C} , is not high, only ~ 5 ms, and about 4X lower than if the CH₄ were ionized at the separatrix. For such a wall injection location, however, most of the CH₄ gets ionized to C^{+} , C^{++} , etc., and is efficiently transported along the SOL to the inner divertor, trapping hydrogen by co-deposition there.

I. Introduction

Carbon is commonly used for first wall and divertor target coverage, and since it is susceptible to chemical sputtering, studies have been carried out on most tokamaks using injection of known flow rates of methane to evaluate the magnitude and characteristic radiative emissions associated with chemical sputtering. Ref. [1] provides an extensive set of references for methane injection experiments including studies on core carbon transport, plume characterization, erosion and re-deposition, molecular break-up studies, and evaluation of carbon penetration through the SOL to the core.

On DIII–D we carried out an experiment [2] involving the injection of ¹³CH₄ at the top of the torus, similar to one carried out on JET [3], to study certain aspects of the carbon-tritium co-deposition process, which can have serious implications for tritium retention in ITER. In this experiment care was taken to make the injection toroidally-symmetric, aiding the interpretation: CH₄ injection was through the upper outer pumping plenum (Fig. 1) – thus justifying the standard, but often not satisfied, code assumption of symmetry. Based on the earlier ¹³CH₄ puffing experiments on JET, it is believed that a large scale convective pattern in the SOL, which transports wall-released C poloidally over the top of the closed flux surfaces, and down into the inner divertor, led to the observation of strong retention of tritium in the inner divertor of JET and very little in the outer divertor. One of the objectives of the present experiment was to obtain direct visual

confirmation of this poloidal convection pattern using toroidal cameras and vertical filterscopes viewing the injection region. A second objective was to establish the efficiency with which wall-released methane is converted to C-ions (*i.e.*, not being lost back to local solid surfaces as neutral and charged molecular fragments). One of the main contributors to C subsequently appearing in H/D/T co-deposits may be chemical sputtering of the walls. The efficiency of penetration of carbon is likely to be much higher for wall sources than for release from divertor targets where prompt local re-deposition can be strong due to the local fast, strongly collisional plasma flow to the targets. A third objective was to measure the efficiency of core contamination of such a toroidally symmetric wall source.

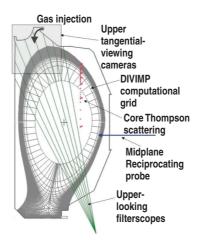


Fig. 1. Gas injection arrangement, specific diagnostics used and computational grid.

A methane-break-up module has been added to the OEDGE [4] (DIVIMP) code in order to interpretively model the results of the injection of ¹³CH₄ into DIII–D [5].

II. Experiment and Modeling

The experiment was carried out over 2 days. Ordinary ¹²CH₄ was used on the first –'plasma characterization' – day, with many repeat shots to maximize edge diagnosis. The rate of injection, 4.4 tl/s, was established by adjustment to achieve an approximate 35% increase of core carbon density over 500 ms, as measured by CER (CVI), over the no-injection base. This condition was chosen to give a large enough injection rate to get measurable effects without disturbing the plasma. The fact that the injection was not localized – but was distributed in a toroidally symmetric way – greatly helped to reduce the risk of significantly changing the plasma at the location where the gas entered – which is the most critical location. Injection lasted for 3.0 s in each discharge, beginning after stable L-mode conditions were achieved. The ¹³CH₄ puffing was repeated over a series of 22 consecutive identical discharges on the 2nd day. More details of the experiment are provided in [2]. The ¹³C deposits were found to be almost entirely on the inner divertor target [6]. The deposition itself has been modeled using the OEDGE interpretive code [7]. The focus of the present paper is on the region near the injection location, also interpreted using the OEDGE code, but with the addition of a module DIVIMP-HC that follows the molecular break-up

kinetics (presently using the simple data base of Ehrhardt and Langer [8], preliminary to upgrade to the more exhaustive data base of Janev and Reiter [9]).

Data from the toroidally viewing camera were processed to give 2D reconstructions of the CII (at 514 nm), *i.e.*, C⁺, and CIII (at 465 nm), i.e. C⁺⁺, 'clouds', Fig. 2, top. The reconstruction was made possible by the fact that the injection was toroidally symmetric. It is evident that the CIII is shifted toward the inner divertor, relative to the CII, indicative of entrainment of the carbon in a strong parallel flow along **B** toward the inside. It is also possible that the transport is a cross-field drift (~poloidal), but the hypothesis here is that the transport is parallel – or *effectively* parallel.

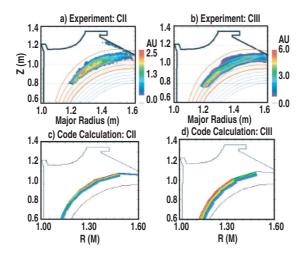


Fig. 2. Reconstructed 2D pictures from the toroidal viewing camera, in CII (top left) and CIII (top right). At bottom the same but for code results, case of $M_{\parallel}=0.4$ and $D_{\perp}=0.3$ m²/s. Same color bars for expt and code. Note that the camera CIII picture is occluded below $Z\sim0.8$ m.

Such fast parallel flows in the main SOL have been reported in other tokamaks, measured for example with Mach probes [10, 11, 12]. The driving mechanism has not as yet been identified. Therefore in the OEDGE modeling used here a value of the parallel flow speed is simply specified as part of the 'plasma background', which is then used as input to the Monte Carlo DIVIMP-HC code. The radial profiles of n_e and T_e are taken from a combination of measurements from Thomson scattering (TS) and a reciprocating probe (RCP), Fig. 3, plus an OSM solution generated by Elder [7]; the TS and RCP profiles did not precisely match – perhaps due to EFIT uncertainties – however, small shifts produced good agreement for all 3 profiles, for both n_e and T_e . The 'plasma background' used here is very simple: radial profiles of n_e and T_e (= T_i , assumed) that are taken to be constant along the field lines, and a parallel flow speed that is also invariant along the field lines. The parallel flow was specified using a (spatially constant over the whole SOL) Mach Number, M_{\parallel} . $M_{\parallel} = v_{\parallel}/[k(T_e + T_i)/m_D]^{1/2}$, $T_i = T_e$ assumed.

It is possible to get a qualitative impression of the degree of match between code and the camera 2D CII, CIII 'clouds' just by looking at the plots. Fig. 2 bottom shows a particular code result ($M_{\parallel}=0.4$ and $D_{\perp}=0.3$ m²/s) which reproduces the camera pictures reasonably well, Fig. 2 top.

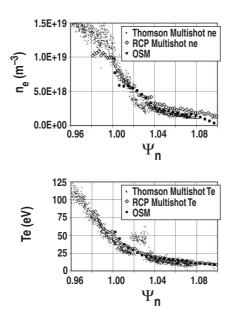


Fig. 3. Profiles of n_e and T_e in the SOL, from [7].

However, in order to make quantitative comparisons, the camera data were processed to produce poloidal profiles (coordinate center at machine center, and poloidal angle measured CCW from vertical), by integrating along the radial lines extending from the machine center. Fig. 4 shows the experimental results for CII and CIII, together with code results for M_{\parallel} ranging from 0 to 1, all using $D_{\perp}=0.3$ m²/s. As can be seen, the best match is for $M_{\parallel}=0.2-0.6$. Similar comparisons were used to establish that $D_{\perp}\sim0.3$ m²/s gave the best match, although shapes were not strongly dependant on D_{\perp} . The same sort of quantitative comparison can be made with the filterscope CIII poloidal distribution and in Fig. 5 the experimental results are compared with the code results, again for M_{\parallel} ranging from 0 to 1, all using $D_{\perp}=0.3$ m²/s. Here the best value of M_{\parallel} is more narrowly indicated to be ~0.4. In a setup shot, various flow rates were tried, up to levels ~4X that which was finally used in the actual 13 CH₄ injections. The poloidal shapes of the measured filterscope CIII emission was insensitive to the flow rate over this range, indicating that the gas puff is not itself causing the SOL plasma flow, but is providing a valid way to measure the pre-existing flow, *i.e.*, M_{\parallel} .

The other main adjustable parameter was the cross-field diffusion coefficient, D_{\perp} , also taken to be spatially constant. A large number of OEDGE code runs were made, varying M_{llsep} and D_{\perp} , searching for the solution which best met the following constraints:

- 1. Matching the shape and separation of CII and CIII intensity distributions ('clouds') measured by the toroidally-viewing cameras, Fig. 2.
- 2. Matching the poloidal distribution of CIII (at 465 nm) light measured by the absolutely calibrated Filterscope, which viewed the gas injection region from below, Fig. 1.
- 3. Matching the C^{6+} density in the confined plasma, as measured by CER, which indicated a total C-ion density just inside the separatrix of $2x10^{16}$ m⁻³ \pm 50%.

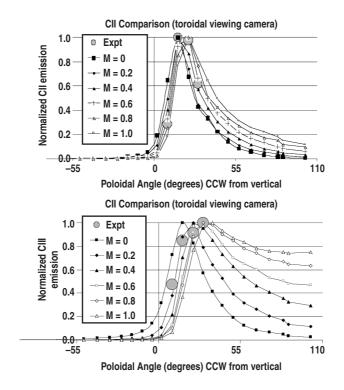


Fig. 4. Comparison of CII and CIII poloidal profiles taken from the 2D reconstructions of the toroidally viewing camera, and code results assuming different values of M_{\parallel} . $D_{\perp}=0.3$ m²/s. All profiles normalized to unity at peak.

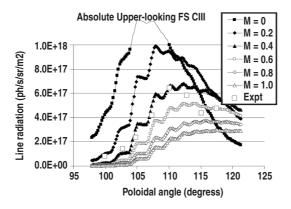


Fig. 5. Comparison of poloidal profile of CIII measured by the upward-looking Filterscope (absolutely calibrated) compared with code results based on various parallel Mach Numbers. $D_{\perp} = 0.3 \text{ m}^2/\text{s}$.

The values of M_{\parallel} and D_{\perp} inferred here are close to the values inferred by Elder from his analysis of the ^{13}C deposition pattern in the inner divertor⁷.

The comparison of the measured C-ion density just inside the separatrix, $2x10^{16} \,\mathrm{m}^{-3} \pm 50\%$, and the code values are given in Fig. 6, and indicates a value of $\mathrm{M}_{\parallel} \sim 0.3$. Taking into account the radial profile of the C-ions in the main plasma, from CER, the particle confinement time (*i.e.*, the total core $^{13}\mathrm{C}$ -ion content divided by the $^{13}\mathrm{CH}_4$ puff rate) is found to be $\tau_c \sim 5.5$ msec. This value is fairly close to the values reported by West [13], of ~ 10 ms, also for CH₄ puffing into DIII–D, although using localized wall puffing. The closely related OEDGE modeling of Elder [7] showed that τ_c would be $\sim 4\mathrm{X}$ higher if the CH₄ were

ionized at the separatrix, rather than at the actual location, ~ 3 cm radially outside the separatrix. Thus the main plasma is fairly well shielded from such an external proxy for a wall source of methane – and thus, by implication, for wall chemical sputtered sources.

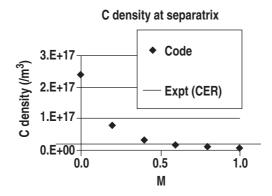


Fig. 6. Carbon density at the separatrix calculated by the code, compared with the CER measured value.

Sticking probabilities for hydrocarbon fragments were approximated from Ref. 14 as: CH₄: 100%, CH₃: 92%, CH₂: 50%, CH: 20%, C: 25%. DIVIMP-HC results showed that only ~25-40% of the puffed ¹³CH4 was locally deposited (as neutral fragments) and most of the injected C reached the C⁺ and higher states, and was then transported with high efficiency by the fast SOL flow down into the inner divertor. Thus, so far as being a source of carbon which ends up in co-deposition trapping of H/D/T in the inner divertor – such wall chemical sources can, unfortunately, be quite efficient.

III. Conclusion

The molecular breakup of CH₄ injected in a toroidally symmetrical way into the main SOL of DIII–D, at a location far from the divertor, has been modeled using the interpretive DIVIMP-HC (OEDGE) code, to extract information from spectroscopic measurements – toroidal cameras, filterscopes and CER – on the SOL (effective) parallel flow speed, the efficiency of carbon contamination of the main plasma and the efficiency of conversion of the puffed CH₄ to C⁺ in the SOL that can end up creating carbon co-deposits in the inner divertor. Although such chemical wall sources of carbon appear to be fairly well shielded from contaminating the confined plasma, the fast parallel flow, together with the rather small prompt local loss (by neutral fragment deposition near the CH₄ entry into the plasma) means that such sources will be rather efficient at creating carbon H/D/T co-deposits in the inner divertor, in confirmation of the experimental findings in JET [3] and DIII–D [2].

Acknowledgements

The authors would like to acknowledge the support of a Collaborative Research Opportunities Grant from the Natural Sciences and Engineering Research Council of Canada and the work supported by U.S. DOE Grant and Contract Nos. DE-FC02-04ER54698, W-7405-ENG-48, DE-AC02-76CH03073, DE-AC04-94AL85000, DE-FG02-92ER54139.

References

- [1] J.D. Strachan, et al., Nucl Fusion, 43 (2003) 922.
- [2] S.L. Allen, this Conference
- [3] J.P. Coad, et al., JNM 290-293 (2001) 224.
- [4] P.C. Stangeby et al., JNM 313-316 (2003) 883.
- [5] A.G. McLean, MASc Thesis, University of Toronto, 2003.
- [6] W. Wampler, this Conference
- [7] J.D. Elder, this Conference
- [8] A.B. Ehrhardt and W.D. Langer, "Collisional processes of hydrocarbons in hydrogen plasmas", PPPL-2477, Sept 1987.
- [9] R.K. Janev and D. Reiter, J Nucl Mater 313-316 (2003) 1202.
- [10] S.K. Erents, et al., Plasma Phys. Control. Fusion 42 (2000) 905.
- [11] N. Asakura, et al., J Nucl Mater 313-316 (2003) 820.
- [12] B. LaBombard, et al., J Nucl Mater 313-316 (2003) 995.
- [13] W.P. West, et al., J Nucl Mater 313-316 (2003) 1211.
- [14] D.A. Alman, D.N. Ruzic, J Nucl Mater 313-316 (2003)182-186.