Comparison of Critical Values of R/L_{Te} for ETG Modes Based on an Analytic Expression with GKS Simulations for DIII-D Discharges J.C. DeBoo, D.R. Baker and G.M. Staebler DIII-D National Fusion Facility General Atomics 9th Joint US-European TTF Workshop April 2 – 5, 2003 Madison Wisconsin #### **Motivation** - Understanding electron thermal transport remains a key area of study in the overall understanding of transport in tokamak plasmas. - Electron Temperature Gradient (ETG) modes can lead to enhanced electron heat flux when coupling of these modes leads to the formation of so called streamers. - Full gyrokinetic stability (GKS) code calculations can be used to find the critical electron temperature gradient scale length for ETG modes but the code requires significant computing time. - An analytic expression for (R/L_{Te})_{crit} can be useful if accurate enough - Compare an analytic expression for (R/L_{Te})_{crit} with GKS code results #### Expression for (R/L_{Te})_{crit} for ETG Modes From Jenko* $$(\mathbf{R}/\mathbf{L}_{T_e})_{crit} = \max\{(1+\tau)(1.33+1.91s/q)$$ $\mathbf{x}(1-1.5\epsilon)[1+0.3\epsilon(\mathbf{d}\kappa/\mathbf{d}\epsilon)], \ 0.8\mathbf{R}/\mathbf{L}_n\}$ For magnetic shear $s \ge 0.2$ and normalized pressure gradient $\alpha \le 0.1$ Where s = (r/q)(dq/dr); $$\alpha$$ = -q²R(d β /dr); τ = Z_{eff}(T_e/T_i); ϵ = r/R₀; κ = elongation and R/L_n = (R/n)(dn/dr) *F. Jenko, W. Dorland and G.W. Hammett, Phys. Plasmas 8 (2001) 4096 ### **Experimental Profiles From DIII-D Discharges Used For Comparison** - Three pairs of discharges studied - L-mode vs H-mode: compares varying T_e/T_i with both T_e and T_i varied - L-mode pair 107564 and 107567: vary T_e/T_i with fixed T_i - L-mode pair 106740 and 106748: vary s/q by varying q - General discharge characteristics | | <u>L-Mode</u> | <u>H-Mode</u> | |-----------------------|---------------|---------------| | $B_{T}(T)$ | 2.0 | 1.9 | | I _p (MA) | 0.8-1.5 | 1.3 | | $n_e(10^{19} m^{-3})$ | 1.9-2.6 | 3.6 | | κ | 1.4-1.6 | 1.8 | #### Comparison of L-Mode and H-mode Profiles ### Analytic Expression Agrees Reasonably Well With GKS Code And Shows Similar Trend Across Plasma - Analytic expression not evaluated where s < 0.2 - The two most dominant terms in the analytic expression are the terms containing $\tau = Z_{eff} T_e / T_i$ and s/q ### Alpha Values Are Close To But Typically Above The Model Criteria For Applicability • The model is expected to be applicable to Tokamak discharges with $\alpha \le 0.1$ ### Plasma Profile Comparison For T_e Variation At Fixed T_i ### Agreement Between GKS Code Results and Analytic Expression Remains Good with T_e/T_i Variation - Excellent agreement toward outside of plasma - Agreement becomes worse in region where T_e/T_i begins to differ in the two discharges #### Plasma Profile Comparison At Two q Values ### Agreement Between GKS Code Results and Analytic Expression Remains Good At Low and High q Values Agreement improves toward outside of plasma where s/q is larger ### Larger s/q Is Stabilizing For ETG Modes • The critical R/L $_{T_e}$ is larger at larger s/q # R/L_{Te} Values From The Expression Are Systematically Below Values From The GKS Code, But Are Generally Within 30 % ## When Averaged Over All Cases Studied A Slight Trend Toward Better Agreement Is Observed Toward The Plasma Edge - Values from the expression are averaged by radial location over all cases studied - Error bars represent \pm 1 σ in the distribution #### **SUMMARY** - Critical R/L_{Te} values for ETG modes from the GKS code were compared to values from an analytic expression developed in F. Jenko, et al., Phys. Plasmas <u>8</u> (2001) 4096. - Although the region of applicability of the expression is marginally violated for the normalized pressure gradient α ($\alpha \le 0.1$) for the experimental discharges studied, the expression agrees reasonably well with GKS code calculations. - R/L_{Te} values from the expression are systematically below values from the GKS code but are generally within 30% of GKS results with a slight trend toward better agreement toward the plasma edge.