Comparison of Critical Values of R/L_{Te} for ETG Modes Based on an Analytic Expression with GKS Simulations for DIII-D Discharges

J.C. DeBoo, D.R. Baker and G.M. Staebler

DIII-D National Fusion Facility

General Atomics

9th Joint US-European TTF Workshop April 2 – 5, 2003 Madison Wisconsin

Motivation

- Understanding electron thermal transport remains a key area of study in the overall understanding of transport in tokamak plasmas.
- Electron Temperature Gradient (ETG) modes can lead to enhanced electron heat flux when coupling of these modes leads to the formation of so called streamers.
- Full gyrokinetic stability (GKS) code calculations can be used to find the critical electron temperature gradient scale length for ETG modes but the code requires significant computing time.
- An analytic expression for (R/L_{Te})_{crit} can be useful if accurate enough
 - Compare an analytic expression for (R/L_{Te})_{crit} with GKS code results

Expression for (R/L_{Te})_{crit} for ETG Modes From Jenko*

$$(\mathbf{R}/\mathbf{L}_{T_e})_{crit} = \max\{(1+\tau)(1.33+1.91s/q)$$

 $\mathbf{x}(1-1.5\epsilon)[1+0.3\epsilon(\mathbf{d}\kappa/\mathbf{d}\epsilon)], \ 0.8\mathbf{R}/\mathbf{L}_n\}$

For magnetic shear $s \ge 0.2$ and normalized pressure gradient $\alpha \le 0.1$

Where s = (r/q)(dq/dr);
$$\alpha$$
 = -q²R(d β /dr); τ = Z_{eff}(T_e/T_i); ϵ = r/R₀; κ = elongation and R/L_n = (R/n)(dn/dr)

*F. Jenko, W. Dorland and G.W. Hammett, Phys. Plasmas 8 (2001) 4096

Experimental Profiles From DIII-D Discharges Used For Comparison

- Three pairs of discharges studied
 - L-mode vs H-mode: compares varying T_e/T_i with both T_e and T_i varied
 - L-mode pair 107564 and 107567: vary T_e/T_i with fixed T_i
 - L-mode pair 106740 and 106748: vary s/q by varying q
- General discharge characteristics

	<u>L-Mode</u>	<u>H-Mode</u>
$B_{T}(T)$	2.0	1.9
I _p (MA)	0.8-1.5	1.3
$n_e(10^{19} m^{-3})$	1.9-2.6	3.6
κ	1.4-1.6	1.8

Comparison of L-Mode and H-mode Profiles

Analytic Expression Agrees Reasonably Well With GKS Code And Shows Similar Trend Across Plasma

- Analytic expression not evaluated where s < 0.2
- The two most dominant terms in the analytic expression are the terms containing $\tau = Z_{eff} T_e / T_i$ and s/q

Alpha Values Are Close To But Typically Above The Model Criteria For Applicability

• The model is expected to be applicable to Tokamak discharges with $\alpha \le 0.1$

Plasma Profile Comparison For T_e Variation At Fixed T_i

Agreement Between GKS Code Results and Analytic Expression Remains Good with T_e/T_i Variation

- Excellent agreement toward outside of plasma
- Agreement becomes worse in region where T_e/T_i begins to differ in the two discharges

Plasma Profile Comparison At Two q Values

Agreement Between GKS Code Results and Analytic Expression Remains Good At Low and High q Values

 Agreement improves toward outside of plasma where s/q is larger

Larger s/q Is Stabilizing For ETG Modes

• The critical R/L $_{T_e}$ is larger at larger s/q

R/L_{Te} Values From The Expression Are Systematically Below Values From The GKS Code, But Are Generally Within 30 %

When Averaged Over All Cases Studied A Slight Trend Toward Better Agreement Is Observed Toward The Plasma Edge

- Values from the expression are averaged by radial location over all cases studied
- Error bars represent \pm 1 σ in the distribution

SUMMARY

- Critical R/L_{Te} values for ETG modes from the GKS code were compared to values from an analytic expression developed in F. Jenko, et al., Phys. Plasmas <u>8</u> (2001) 4096.
- Although the region of applicability of the expression is marginally violated for the normalized pressure gradient α ($\alpha \le 0.1$) for the experimental discharges studied, the expression agrees reasonably well with GKS code calculations.
- R/L_{Te} values from the expression are systematically below values from the GKS code but are generally within 30% of GKS results with a slight trend toward better agreement toward the plasma edge.

