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ABSTRACT

The peeling-ballooning model for edge localized modes (ELMs) and pedestal constraints,

based upon ideal MHD instabilities driven by pressure gradients and current in the edge barrier

region, has been broadly applied toward understanding ELM and pedestal behavior in a number

of tokamak experiments. Due in part to multiple driving terms, multiple wavelengths and second

stability access physics, the peeling-ballooning stability limits which are proposed to constrain

the pedestal and trigger ELMs depend sensitively on many details of the tokamak equilibrium.

Here we present a technique for characterizing these stability constraints as a function of

important parameters, using carefully constructed model equilibria. We discuss comparisons of

calculated stability constraints to observed pedestal behavior, in which an encouraging level of

agreement is found. We then present results of an extensive series of calculations which

characterize the peeling-ballooning stability constraints as a function of pedestal width, magnetic

field, plasma current, density, and triangularity.
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1.  INTRODUCTION AND BACKGROUND

Understanding the physics which governs the edge transport barrier region (or �pedestal�)

in high performance (�H�mode�) tokamak plasmas is of critical importance to future burning

plasma tokamak devices for two primary reasons. The first is the strong dependence of core

confinement on the pressure at the top of the pedestal (or �pedestal height�), which has been

observed in experiment as well as predicted by a range of transport models. The second is the

presence of edge localized modes (ELMs), which are discrete, repetitive magnetic perturbations

in the pedestal vicinity which transport bursts of energy and particles from closed to open

magnetic field lines and then to the material surfaces of the divertor or vessel wall. While ELMs

are generally benign in present experiments, they pose a significant material erosion risk in

planned burning plasma devices.

Many theoretical studies of ELMs have focused on MHD instabilities. Early work focuses

on infinite toroidal mode number (n) ballooning modes or low n kinks [1], and recent work

incorporates peeling modes and peeling-ballooning mode coupling, initially in the high n s-alpha

limit [2], and more recently with finite-n corrections and realistic geometry, and emphasizing the

important role of intermediate-n (3< n < 40)  coupled peeling-ballooning modes as commonly

the limiting instability in the pedestal [3]. These recent studies develop what is currently referred

to as the peeling-ballooning model of ELMs and pedestal constraints. A key element of this

model is that the peeling-ballooning modes provide an effective limit on the pedestal height (at a

given pedestal width) as well as driving the ELMs. Of course the model must be combined with

an understanding of the physics determining the pedestal width in order to make first principles

calculations of the pedestal height.

In the peeling-ballooning picture [2,3], the sharp pressure gradients and consequent large

bootstrap current in the pedestal region provide the free energy which can destabilize peeling
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(i.e., edge localized external kink) and ballooning modes over a wide range of toroidal mode

numbers (n ). The bootstrap current plays a complex dual role in the stability physics, on one

hand driving peeling modes, while on the other lowering edge shear and opening second stability

access to high-n  ballooning modes. Field line bending stabilizes long wavelength modes, while

short wavelengths are stabilized by a combination of second stability and FLR/diamagnetic

effects, shifting the limiting modes to intermediate wavelengths. These dominant modes are

referred to here as coupled �peeling-ballooning� modes, and are driven by both parallel current

(Jped ) and the pressure gradient ( ! p ped ).  These intermediate-n  peeling-ballooning modes

impose constraints on the pedestal height, which are functions of the pedestal width, plasma

shape, collisionality, safety factor and other equilibrium details. Figure!1 provides a schematic

rendering of these stability bounds and how they vary with shape. Note that the current in the

edge is generally primarily driven by the bootstrap effect, and is therefore roughly proportional

to the pressure gradient in steady state, but reduced by collisionality. Because of this

collisionality dependence, discharges at very high density will have low values of the current at a

given ! p ped  and will therefore encounter the �ballooning� instability boundary at the lower right

as ! p ped  increases, while discharges at very low density will have nearly the full collisionless

bootstrap value of Jped  and may encounter the �peeling� instability boundary at the top of Fig.!1.

In the usual intermediate range of densities the instability boundary will be encountered at the

upper right where intermediate n peeling-ballooning modes are limiting. These different stability

boundaries are associated with modes of varying characteristics which may be associated with

different types of ELM cycle as discussed in Refs.!2 and 3.  We emphasize that the calculations

presented in this paper are for ideal MHD instabilities, and that these instabilities are expected to

provide pedestal constraints which pertain for high performance, high power H-mode plasmas

(with so-called �Type I� and �Type II� ELMs).  There also exist low power regimes, such as the

high collisionality variant of �Type III� ELMs, which appear to be constrained, perhaps by

resistive MHD physics, to values below the ideal constraints calculated here.  However, the high



CHARACTERIZATION OF PEELING-BALLOONING STABILITY LIMITS ON THE PEDESTAL P.B. Snyder, et al.

GENERAL ATOMICS REPORT A24502 3

power, lower collisionality regimes are expected to be more relevant both for optimizing

performance of current devices, and for Next Step fusion devices.

Fig. 1.  Schematic diagram of peeling-ballooning stability boundaries as a function of pedestal

pressure gradient and current.  Boundaries for weak, intermediate and strong shaped discharges are

characterized.

A number of studies have compared observed ELM and pedestal behavior to calculated

stability bounds using experimentally reconstructed equilibria [3�8]. These studies have

generally found that the observation of Type I ELMs can be quantitatively associated with the

crossing of MHD stability boundaries, and that observed characteristics of ELMs are

qualitatively consistent with calculated unstable mode structures and hybrid growth times. As an

example, we show in Fig. 2 calculated mode structures for low (a) and high (b) density DIII�D

discharges described in Ref.!8. Both discharges are found to be peeling-ballooning unstable just

before the ELM is observed, with broad mode structures calculated for the low density, large

ELM case, and narrow mode structures for the high density small ELM case (note that issues of

ELM dynamics and ELM size are beyond the scope of this paper, but have been addressed

qualitatively in the literature [2,3,5-10] and will be the subject of future studies).
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Fig. 2.  Unstable mode structures calculated by ELITE just before an ELM for

(a) low density plasma with large ELMs (b) high density plasma with small ELMs.
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2.  CHARACTERIZING PEELING-BALLOONING STABILITY BOUNDS

Direct stability calculations on experimental equilibria allow interpretation of observed

edge behavior and provide a useful check of the validity of the peeling-ballooning model.

However, because they require detailed profile information from experiment, they do not provide

a method to extrapolate or predict pedestal constraints and ELM behavior in future experiments.

For this purpose, we employ a technique using model equilibria which are characterized by a

relatively small number of important parameters. We follow the technique outlined in Refs. 9

and 10.

2.1.  Technique for Equilibrium Construction and Stability Boundary Calculation

A general solution to the Grad-Shafranov equation for 2D ideal MHD equilibrium allows

two free profile functions as well as a free boundary shape, and thus, in general, an infinite

number of 0D parameters are required to fully specify the equilibrium.  To conduct a practical

stability study, it is necessary to limit the number of these parameters, for example by choosing

simple functional forms for the profile functions and boundary shape.  Such stability studies

using parameterized equilibria have been carried out, both for low n kink modes and for infinite

n ballooning modes, for example in the well known Troyon beta limit study.  Here we follow a

related approach to study intermediate n peeling-ballooning constraints on the pedestal .  We

employ profile functions optimized to take advantage of known pedestal characteristics, such as

approximately hyperbolic tangent shape of profiles and large bootstrap current in the edge barrier

region,  and follow a procedure designed for the calculation of pedestal stability constraints as a

function of a relatively small number of key parameters.  These key parameters are taken to be

the pedestal width ("), the toroidal magnetic field (Bt ), total plasma current (Ip ), major radius

(R), minor radius (a), pedestal electron density (neped ), plasma elongation ( "), and triangularity
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("). Density and temperature profiles are given a hyperbolic tangent shape in the pedestal

(resembling measured profiles), and a simple polynomial dependence in the core (where details

of the profile shape impact pedestal stability less strongly):

ne "( ) = nsep + an0 tanh 2 1 # $mid( ) %[ ] # tanh 2 $ # $mid( ) %[ ]{ }

+ an1H 1 # $ $ped( )
&n1[ ]

&n2 !!!, (1)

T(") = Tsep + aT0{tanh[2(1 # $mid )/%] # tanh[2($ # $mid )/%]}

+ aT1H(1 # $/$ped ) [1 # ($/$ped )
&T1 ]&T2

!!!, (1a)

where " is the normalized poloidal flux, "  is the pedestal width in " space, and H is the

Heaviside step function.   In addition to the key parameters mentioned above, a number of other

parameters must be specified to uniquely determine the equilibrium.  These include the

separatrix values of density and temperature (nsep and Tsep), the radial location of the steep

gradient pedestal region (given by "mid and "ped="mid-" /2), the core profile form parameters

!1  and !2 , and the axis values T0 and n0, which together with the pedestal values determine the

a0 and a1 coefficients above. In the pedestal region, the parallel current is taken to be equal to the

bootstrap current as calculated using the Sauter collisional model [11] [note that no additional

fast equilibrium variation, orbit squeezing, or boundary effects are added to the Sauter model,

and that the ion mass (mi) and average charge state (Zeff) or its profile must be specified, and that

Ohmic current, if present, is taken to be small compared to the bootstrap current in the sharp

gradient pedestal region]. In the core, where details of the current are relatively unimportant, the

profile is taken to have a simple polynomial form, with coefficients chosen to give a specified

central q0 and the desired Ip . A number of simplifications are made to streamline the equilibrium

construction process, including up-down symmetry (while matching the given separatrix

elongation and triangularity), and lack of true X�points.   Note that the widths of the temperature

and density pedestals are taken to be equal in this study for simplicity, but that the effects of
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differing widths for T and ne can be taken into account in a similar study simply by defining

separate !n and !T in Eqs 1 and 1a above.

For a given set of the above equilibrium parameters, the pedestal temperature is then

increased until MHD stability boundaries are crossed. Here we employ the ELITE code [12,3], a

highly efficient 2D MHD code designed for the study of edge localized modes, to test stability to

a range of modes, n = 6, 8, 10, 15, 20, 30.   A standard set of physics assumptions is employed

for these calculations of instability thresholds for ideal, external MHD modes.  The plasma in the

closed flux region is taken to be ideally conducting, and to be surrounded by a vacuum region

which models the relatively cold, resistive plasma on open field lines.

In this way, we calculate the maximum stable pedestal temperature as a function of the

given equilibrium parameters, Tpedmax=f(" ,Bt ,Ip ,R,a,","; nsep,Tsep,"mid,!1 ,!2 ,T0,n0,q0,mi,Zeff),

where the parameters in front of the semicolon are taken to be the �key� parameters whose

dependencies will be the focus of this study.  Note that both sides of the above equation can of

course be multiplied by nped and other appropriate factors to give the stability limit in terms of

ppedmax, "pedmax, "Npedmax etc.

We note that the stability bound f above can, with sufficient calculation, be characterized

over a broad range of parameters.  This calculation does not in principle require any reference to

experiment, and can be performed for parameters in the range of present experiments as well as

for those expected in future experiments.   Of course to compare to observations one must

calculate f in the range of parameters spanned by existing experimental pedestal databases.  This

is undertaken in the following subsection 2.2.  Then in subsection 2.3, parameter scans of the

�key� parameters are performed to study their dependencies over a broad range.

2.2.  Comparison to Observation

The ability of the above technique to accurately calculate pedestal height constraints (as a

function of the pedestal width, which is taken as an input parameter here) will depend both on

the correctness of the peeling-ballooning model, and on the extent to which the model equilibria
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provide sufficiently accurate representations of the true experimental equilibria. This can be

tested by choosing sets of equilibrium parameters for which experimental data is available,

calculating stability bounds using model equilibria, and then comparing them to observed

pedestal heights in discharges with approximately the chosen key equilibrium parameters. Here

we review three such comparisons using parameters and data from the DIII�D tokamak [10].  In

these calculations the non-�key� parameters are given values approximately in the observed

range; here n0 =1.5 neped , nsep = 0.25 neped , Tsep=100 eV, !n0 =1 , !n1 = 1.1, !T0 =1 ,

!T0 = 2 , "mid =1#$ 2, q0=1.05, mi=2, Zeff=2.

The first comparison, shown in Fig.!3(a), studies pedestal height as a function of density,

with the axis pressure held fixed (n0T0=2 1020 keV m-3), using the parameters Bt = 2T ,

Ip =1.225 MA , R!= 1.685!m, a!= 0.603!m, "!= 1.77, "!= 0.0, pedestal width on the outboard

midplane of 1.7!cm, and neped  varied from 2 to 9 !10
19

 m
�3

. The calculated pedestal stability

bound is given by a solid line in Fig.!3(a).  We emphasize that all the key parameters except the

one studied (neped) are held fixed in the stability calculation. To compare to the observational

pedestal dataset one must of course allow a narrow range of these �fixed� parameters because no

points in the dataset will match them all precisely.  This range is chosen to be wide enough to

include sufficient data to allow a meaningful comparison, yet narrow enough such that variation

of these parameters does not unduly skew the comparison.  The data is taken from the DIII�D

pedestal database,  from the last 20% of the Type I ELM cycle, here with allowed ranges for the

�fixed� parameters of Bt =1.9 � 2.05 T , Ip =1.15 !� 1.25 MA, 0 <! < 0.2 , temperature and

density pedestal widths between 1.2 and 2.2!cm, and injected power Pinj >1 MW .

A second comparison studies pedestal height trends with triangularity, using the parameters

Bt = 2.08 T , Ip =1.525 MA , "!= 1.8, neped = 4 !10
19
m
�3

, temperature and density pedestal

width of 1.4!cm, and triangularity varied from 0 to 0.45. Here the axis temperature is fixed

(T0=2.5 keV), and again, in calculating the stability bounds, all of the key parameters are fixed

except the one studied (!). The result is again compared to DIII�D data, here with allowed

parameter ranges Bt = 2.05  to 2.15!T, Ip =1.4  to 1.65!MA, neped = 3.5  to 4.5 !10
19
m
�3

, and
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temperature and density pedestal widths between 0.9 and 1.9!cm.  Good agreement is again

found between the calculated pedestal stability bound and the observed pedestal height shortly

before an ELM as shown in Fig.!3(b).  The increase in the stability bound with triangularity is

primarily due to an opening of second stability access, and the bootstrap current plays a key role

as shown schematically in the �strong shaping� curve in Fig.!1.  Without the bootstrap current

[dashed line in Fig.!3(b)], second stability access is not opened and the increase in stable pedestal

height with triangularity is much weaker.

Fig. 3. Comparison of pedestal stability limit calculated with ELITE to DIII�D data as a function of

(a) pedestal density (b) triangularity and c) plasma current.
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Finally, we study trends in pedestal height with Ip , using equilibria with Bt = 2.075 T ,

R!= 1.69!m, a!= 0.59!m, ! =1.8 , ! = 0.25 , pedestal width (! ) of 4.5% of the normalized

poloidal flux, and pedestal density (neped ) 40% of the Greenwald limit (nGW ), where

n
GW
(10

20
m
�3
)!= Ip (MA)/! a

2
(m) .  The current ( Ip ) is varied from 0.75 to 1.75 MA, with core

temperature (T0=2.975 eV), and thus core !N, fixed.  Here ELITE is used to test stability for

5 > n > 30 , and the DCON code is used to confirm stability at low n, giving the stability

boundary shown in Fig.!3(c).  The stability bound is again compared to DIII�D pedestal data in

the final 20% of the ELM cycle, with parameter ranges 2.05 T < Bt < 2.1 T ,

0.3 < neped/nGW < 0.5 , 0.2 < ! <  0.4 , and 3.5% < !  < 5.5%.

The level of agreement in all three studies shown in Fig.!3 is strongly encouraging.  Note

that there are no adjustable parameters in the stability calculations, and that both the absolute

values and the trends with density, triangularity and current are reproduced with reasonable

accuracy.  This agreement strongly encourages the use of this technique to predict pedestal

behavior in future experiments as has been done for ITER in Ref.!9.  However, while most of the

key parameters needed to construct the model equilibria and calculate stability bounds

(e.g., Bt , Ip , neped , ! , ! ) are known or expected to be controllable in future experiments, the

pedestal width !  is not known, and no widely accepted first principles model exists.  Hence,

pedestal stability bounds are calculated as a function of the width and can be used to study trends

in the observed width and to provide a key component of models which seek to explain the

physics of the pedestal width.

2.3.  Characterization of functional variations of peeling-ballooning stability boundaries

Here we provide an extensive set of calculated peeling-ballooning stability boundaries,

which elucidate the underlying stability physics and should provide useful input for modelers

attempting to characterize pedestal stability bounds more accurately (e.g., Refs.!13-15).

We carry out a series of pedestal stability scans, using as a baseline DIII�D-like

equilibrium parameters Bt = 2T , Ip =1.225 MA , R!= 1.685!m, a!= 0.603 m, ! =1.77 , and
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calculating stability bounds with ELITE for 5 < n < 30  and with DCON for 1 ! n < 6  (with a

conformal wall at 1.2).  Near resonant conditions are disallowed (m0 � nqa > 0.1).   The non-key

parameters are given values similar to those in the previous subsection (n0 =1.5 neped ,

nsep = 0.25 neped , Tsep=100 eV, !n0 =1 , !n1 = 1.1, !T0 =1 , !T0 = 2 , "mid =1#$ 2, q0=1.05,

mi=2), with the exception that Zeff=2.5, and T0 is specified by a constant core pressure constraint

(n0T0=2 1020 keV m-3).

Scans of the maximum stable pedestal height as a function of pedestal width are shown in

Fig.!4, for ! = 0  and two values of the pedestal density.  The maximum stable height increases

with pedestal width as expected, but the rate of increase is less than linear; that is the pedestal

stability limit is not strictly a limit on the pressure gradient.  This is because (1) finite n modes

are non-local and are directly sensitive to the pedestal width as well as local parameters, and

(2)!the natural magnetic shear in the middle of the pedestal where gradients are steepest

decreases with pedestal width.  This effect is illustrated in plots of normalized pressure gradient

(! ) and magnetic shear in Fig.!4(b).  Fitting the calculated height limit to a functional form

pped ~ !
c
 yields a coefficient c~0.7 for the high density and c~0.8 for the low density cases.

Fig. 4.  (a) Calculated pedestal pressure stability limit as a function of pedestal width for two densities, and

(b) magnetic shear and normalized pressure gradient as a function of width for the nped = 8 " 10
13
cm

�3 case.

The scaling of the pedestal stability bounds with density can be quite complex as illustrated

in Fig.!5.  At low triangularity [Fig.!5(a)], there is no second stability access and the pedestal

stability limit increases slightly with density due to the reduction in bootstrap current
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(i.e., increase in magnetic shear) at higher collisionality as in the simple first stable high-n

ballooning s-alpha diagram.  However, at higher triangularity [Figs.!5(b)  and 5(c)] second

stability access is opened at intermediate densities.  The stability boundary then decreases at high

density due to collisional reduction of the bootstrap current which weakens second stability

access and also decreases at very low density due to the onset of kink/peeling modes.  Note that

the shape of this curve is consistent with the �strong shaping� curve in Fig.!1 noting that the

stability boundary is encountered in the upper right of the diagram and that current decreases

with density.  The overall dependence with triangularity illustrated in Figs.!5(a)�(c) scales

roughly as ~ (1+ !)
1.3

 when averaged over all densities, and as ~ (1+")1.7 for intermediate

density (4 !10
19
m
�3

).

Fig. 5.  Maximum stable pedestal pressure as a function of pedestal density for (a) triangularity!= 0

(b) triangularity!= 0.3 (c) triangularity!= 0.5, for a range of pedestal widths.

Scaling of stability bounds with magnetic field and plasma current is shown in Fig.!6 for

! = 0.0  and 0.3, and nped = 8!10
19
m
�3

.  In Fig.!6(a) the current is increased at constant Bt ,

resulting in a decreasing safety factor (q), in Fig.!6(b) Bt  is increased at constant Ip , resulting in
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an increasing q, and in Fig.!6(c) Ip  and Bt  are both proportionally increased, resulting in an

approximately constant q.  For the low triangularity case, maximum stable pedestal height

increase strongly with Ip(~ Ip
0.9 ) , somewhat less strongly with Bt  (~ Bt

0.6
) due to increasing q

which increases !  at a given pressure gradient and roughly linearly with Bt
* Ip  when both are

increased proportionally.  In the strongly shaped case (! = 0.3), second stability is closed off by

low q for both high current or low Bt , resulting in the behavior shown in Figs.!6(a) and (b).

Again, when Bt  and Ip  are proportionally increased, a roughly linear dependence on Bt
* Ip  is

seen.  Overall the scaling with Bt  and Ip  is roughly a !N  dependence [where ! = !N

I(MA)/a(m) B(T)], though complex interdependencies enter, particularly for strong shaping.

Fig. 6.  Maximum stable pedestal pressure for triangularity!= 0.0 and 0.3 cases as a function of (a) plasma

current with B
t
 constant (b) magnetic field with constant current, (c) magnetic field and plasma current

increases proportionally with ratio Bt/Ip != 0.6125!T/MA.

Finally, scaling with aspect ratio is illustrated via a major radius scan at fixed minor radius

in Fig.!7.  Both q and a/R decrease roughly linearly with R.  At low triangularity (! = 0) the
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stability boundary is found to be fairly insensitive to aspect ratio.  However, for the stronger

shaped case (! = 0.3), second stability is closed off at high R/a (low q) and the stability

boundary approaches the ! = 0  bound.

Fig. 7.  Maximum stable pedestal pressure for triangularity!= 0.0 and 0.3 cases as a function of aspect

ratio, which is varied by changing major radius at a fixed minor radius of 60.3!cm.
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3.  DISCUSSION

Encouraging agreement between calculated peeling-ballooning stability bounds and

observed pedestal constraints has been reported in several studies (e.g., Refs.!3�8).  Here we

discuss a technique employing model equilibria to calculate pedestal stability boundaries as a

function of important equilibrium quantities (Bt , Ip , neped , ! , ! , ! ,...).  This technique allows

for comparisons to existing pedestal data as well as predictions for future experiments and

calculations of general parameter variation of the pedestal stability constraints.  Good agreement

is found between calculated stability bounds and observed pedestal height shortly before ELMs

on the DIII�D tokamak.  The absolute value of the calculated pedestal height constraint as well

as trends with density, triangularity and current are reproduced.  The pedestal width (! ) is taken

as an input in these calculations.  For parameterization and predictive studies, the maximum

stable pedestal height can be calculated as a function of the pedestal width and used either in

conjunction with or for the development of pedestal width models.

We conduct an extensive set of studies characterizing the peeling-ballooning stability

constraints (calculated for n=1 to 30 with ELITE and DCON) as a function of pedestal width,

density, triangularity, current, magnetic field, and aspect ratio.  The complex behavior of the

peeling-ballooning stability physics, for example the dual role of the bootstrap current in opening

second stability access to ballooning modes while also destabilizing peeling modes, makes

simple parameterization of the stability bounds difficult.  For example, multi-parameter

dependencies are introduced by the collisionality dependence of the bootstrap current and the

influence of shape and q on second stability access.  However, some approximate conclusions

can be drawn.  The pedestal height stability limit increases strongly with pedestal width as

expected, but it is not simply a pressure gradient limit, instead increasing roughly as !
0.8

 due to

profile and finite n effects. The current and magnetic field dependencies can be approximated as
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a !N  dependence, and recasting pedestal stability limits in terms of !Nped  introduces a useful

metric.  We note that for Figs.!4, 5 and 7 the illustrated pped  limits can be converted to !Nped

limits via the relationship !Nped !~ 0.13! pped  (kPa).  Access to second stability can significantly

increase pedestal stability limits, but it requires a somewhat delicate balance of parameters,

notably strong shaping, intermediate density, and moderate q.  The observed triangularity

dependence in this study averaged over all densities is roughly ~ (1+ !)
1.3

, but scales as

~ (1+ !)
1.7

 for intermediate density.  We note that these scalings should be used with care due to

the complex multi-parameter dependencies; and that for projection to future experiments, these

rough scalings should be complemented by a detailed pedestal stability study for the relevant

parameters.

The pedestal stability calculations discussed here employ a static ideal MHD model.  While

encouraging agreement has been found between such calculations and experimental

observations, it remains important to consider additional physics such as toroidal rotation shear

and diamagnetic effects which can modify ideal stability limits.  A detailed study of toroidal

rotation shear effects using ELITE is underway and will be reported in a future publication.  In

addition, nonlinear studies of peeling-ballooning mode dynamics using the reduced Braginskii

code BOUT [16] are being conducted to evaluate two fluid effects and explore the nonlinear

dynamics needed for addressing important questions about ELM amplitude and heat loads to

material surfaces.
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