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ABSTRACT

 A new gyro-Landau fluid model for the Landau damping of the circulating particles is

presented. Since trapped particles can bounce average low frequency waves they are not affected

by Landau damping. The loss of bounce averaging when the mode frequency exceeds the

trapped particle bounce frequency is included in the model by changing the phase space

integration boundary. An excellent fit to the kinetic response for the circulating particle density

and the parallel and perpendicular pressure is obtained with six moment equations.
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1.  INTRODUCTION

The theory based transport model GLF23, published in 1997 [1], has proven to be an

accurate predictor of the core energy confinement in L�mode and H�mode tokamak plasmas.

The strength of the model is that it closely approximates the linear growth rates of the dominant

drift-wave instabilities by using a gyro-Landau fluid  (GLF) model to compute the growthrates.

Since the temperature profiles are often close to the marginal linearly stable profiles for these

modes, the quasi-linear GLF23 model can succeed with only a crude model for the saturated

amplitude of the turbulence. The original GLF23 model was valid for only a limited range of

magnetic shear and Shafranov shift and used a shifted circle magnetic geometry. Hence, it could

not be used for modeling the plasma edge. It has also been observed [2] that experimental plasma

condition in the outer part of the plasma can have very strongly unstable electron temperature

gradient modes (ETG). These modes normally are not unstable in the same range of poloidal

wavenumber as the ion temperature gradient mode (ITG). However, in the outer 20% of the

plasma, kinetic linear stability analysis has found the unstable wavenumber range of ETG and

ITG modes can overlap. This situation violates the assumption of a stable gap between ETG and

ITG wavenumber ranges used in GLF23. It also opens up the possibility that ETG modes can

produce significant particle, ion heat and momentum transport in addition to the electron thermal

transport in the overlapping region.

In order to address these limitations of GLF23, and with the aim of making a transport

model which is valid closer to the separatrix , we have begun development of a new model. The

new model aims to treat electrons and ions together on the same footing, so both ETG and ITG

modes can co-exist. This paper focuses on the development of a new GLF model for the passing

particles which includes the loss of Landau damping due to bounce averaging of trapped

particles. Such a model is required in order to be capable of treating the overlapping ion and

electron instability domain. Only the parallel response to zero beta electrostatic potential

perturbations is considered in this paper.

The original GLF model of Hammett and Perkins [3] used a cleaver closure of the fluid

moments of the gyro-kinetic equations which gave an excellent approximation to the kinetic

effect of Landau damping. This model was for circulating particles only. The 4-moment
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Hammett-Perkins model was extended to by adding two perpendicular moments in Ref. 4.

Gyro-Landau fluid models with toroidal drifts have been developed [5,6] using the methodology

of fitting closure coefficients to approximate the exact kinetic response to an electrostatic

potential perturbation. Gyro-fluid equations for trapped electrons have also been developed [7,8].

In Ref. 8 fluid equations are derived from the bounce averaged gyrokinetic equation. The bounce

average assumes the frequency of the instability is less than the bounce frequency. This

assumption breaks down for the high-k ETG modes. Hence, it is not possible to treat ETG modes

by coupling the bounce average equations for trapped electrons to equations for circulating

electrons. An alternative way of including the mirror force in a GLF system has been given in

Ref. 6 However, this approach does not capture the bounce averaging of the trapped particles. In

Ref. 7 the fluid equations are derived by integrating over the trapped and passing regions of

velocity space separately. This is the approach taken here but without the restriction to small

trapped fraction assumed in Refs. 5 and 1.

In this paper the 4+2 moment model for Landau damping of Ref. 4 is extended to include

the exclusion of bounce averaging trapped electrons from the moment equations. The trapped

particles modify the parallel wavenumber terms in the GLF equations. A model for the reduction

in Landau damping due to trapped particles which is fit to the kinetic response will be

determined. This model will in the future be included in a full GLF model including the toroidal

drift terms and the trapped particles.
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2. GYRO-LANDAU FLUID MODEL

Only the parallel wavenumber terms in the GLF equations need to be modified by trapped

particles so it is sufficient to consider a reduced kinetic equation with only motion along the

magnetic field. The reduced kinetic equation is the one dimensional Vlasov equation

!f

!t
+ v||" || f +

e

m
E||

!f

!v
||

= 0    . (1)

Linearizing this equation for a periodic perturbation of the form

E|| = !ik||

T0

e

� " e
i k

||
z!#t( )

   , (2)

f = f0 +
� f  e

i k
||
z!"t( )

   , (3)

yields

! 2"vt
� f + v||

� f + v||
� # f0 = 0    , (4)

where v
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= T0 m , ! = " 2 vtk|| . The static distribution function is a Maxwellian
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2( )
3 2
e
"
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2
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   . (5)

The solution to Eq.!(4) is

� f =
v|| f0

2v
t
! " v

||

� # \   . (6)

In order to construct the GLF system of moment equations the velocity moments of the kinetic

equation [Eq.!(4)] will be taken. The solution of the fluid moment equations will then be found

taking the highest velocity moment as a linear combination of the lower moments to close the
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system of equations. The closure coefficients for the fluid moment equations are chosen to give a

good fit to the corresponding moments of the kinetic solution Eq.!(6).

The normalized moments of the perturbed distribution functions and the corresponding

response functions are defined by:
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parallel energy flux
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parallel thermal stress
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The first four fluid moments of Eq.!(4) are

! 2" � n + � u || = 0     , (12)

! 2" � u || + � p || + gp||

� # = 0    , (13)

! 2"� p || +
� Q || = 0     , (14)

! 2" � Q || + � r ||,|| + gr||,||

� # = 0    , (15)
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where

gp || =
1

n
0
vt
2
d
3
vv||

2

! f0    , (16)

and
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1

n
0
vt
4

d
3
vv||

4
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These equations [Eqs.!(12)�(15)] are identical to the four moment system of Hammett and

Perkins [3] if gp || = 1  and gr||, || = 3  which is the case of no trapped particles. They included a

viscous stress term in Eq.!(13) but showed that such a term is unphysical.

In toroidal geometry, the kinetic equation [Eq.!(1)] is still valid for perturbations which

have a finite parallel wavenumber but vanishing perpendicular wavenumber (i.e. no diamagnetic

or toroidal drift terms). In a torus, the parallel velocity is a function of the total velocity v
2

 and

magnetic moment µ = v!
2
2B  which are constants of the guiding center motion. The magnitude

of the magnetic field 
  
B =

r 
B  varies on a flux surface with the poloidal angleB = B !( ) . Thus,

the parallel velocity varies on a flux surface. It is convenient to introduce the ratios

! =
v||

2

v
2

,  " =
2µ

v
2

   . (18)

These are related by ! = 1" #B . Trapped particles have ! > !
t
= 1 B "( ) . At the

trapped-passing boundary! = !
t
 and the ratio !  is restricted to ! < !

t
= 1" #

t
B 0( ) . The

equilibrium circulating particle fraction is found by integrating only over the circulating particle

region of velocity space (i.e.! " !
t
)

gn =
1

n
0

d
3
vf0

!"!t

# = 1$ ! t    . (19)

Thus, !
t

is the fraction of trapped particles. The higher moment fractions [Eqs.!(16),(17)]

evaluate to gp|| = 1! " t
3 2

,gr||, || = 3 1! " t
5 2( ). For now, it will be assumed that all trapped

particles bounce average the Landau resonance, so they do not contribute to the response

functions. Later a more precise restriction to only those trapped particles which can bounce

average a given wave will be made. Restricting the integration in Eq.!(7) to the passing region of
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velocity space and using the exact kinetic solution [Eq.!(6)] for the perturbed distribution

function gives the modified kinetic density response [9].

Rn = gn + ! Z !( ) " Z ! # t( )( )    , (20)

where Z !( ) is the plasma dispersion function [9].

The higher moment kinetic response functions [Eqs.!(8)�(11)] are

R
u
= 2!R

n
   , (21)

   , (22)

RQ|| = 2!Rp||
   , (23)

Rr||,|| = gr||, || + 2!
2
Rp||    , (24)

It is easy to verify that these exact kinetic response functions satisfy the moment equations

[Eqs.!(12)�(15)].

The GLF equations are constructed to give a good approximation to the kinetic response

functions. This is accomplished by closing the moment equations by expressing the highest

moment as a linear combination of the lower moments. First introducing the heat flux

� q || =
� Q || !"||

� u || , where !|| = gr||,|| gp||  then eliminating the electrostatic potential term from

Eq.!(15) using Eq.!(13) gives

! 2" � q || + � r ||,|| !#||
� p || = 0     . (25)

The adiabatic limit of the thermal stress moment is � r ||,|| !"||
� p || # 0 . Thus, the closure

model is taken to have the form

� r ||,|| = !||
� p || + !|| + "||( ) � p || # gT||

� n ( ) # i 2D||

k||

k
||

� q ||    , (26)

where gT|| = gp|| gn  ensures the correct adiabatic limit. This closure reduces to the one of

Hammett and Perkins for no-trapped particles (note the correspondence to Ref. 3

!|| = 2!1,D|| = D1 ) . Only two real coefficients !|| ,D||( )  are free to be fit to the kinetic
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response functions.  The density response function obtained from the 4-moment equations with

the closure [Eq.!(26)] is (for k|| > 0)

Rn,4 =
gp|| !|| + "|| # 2$ $ + iD||( )[ ]

!
||
+ "

||( ) gT|| # 2$
2( ) + 2$ $ + iD||( ) 2$ 2 # !||( )

   . (27)

Both the adiabatic limits (! = 0 ) and the high phase velocity limits ( ! >> 1) of the

kinetic density response function are correctly fit by this solution to the GLF equations. The

higher moment response functions can be found from the density response R
n,4  using the

relations analogous to Eqs.!(21)�(23) except for the thermal stress Eq.!(24). The adiabatic and

high phase velocity limits of the higher moments up to RQ|| ,4are also found to match the limits of

the corresponding kinetic response functions. The two closure coefficients !|| ,D||( )  were

determined by Hammett and Perkins by fitting to the small phase velocity limit of the density

response. They found !|| = !HP
= 32 " 9#( ) 3# " 8( )  and D|| = DHP

= 2 ! 3! " 8( ) .

The subtraction of the scaled argument plasma dispersion function in Eq.!(20) greatly changes

the small phase velocity behavior of the density response. It is not possible to choose fitting

coefficients !|| ,D||( )  based on a small !  expansion for non-zero trapped fraction due to the

singular limit of Eq.!(20) as ! " 0 . However, a reasonable fit is obtained by choosing !|| ,D||( )
to give an exact fit at the point ! = 1.2 . The equation R

n,4 1.2( ) = R
n
(1.2)  is solved for

!|| ,D||( ) . The resulting functions of !
t
 can be approximated by

D|| = DHP
0.59 + 0.411! "

t( )
5[ ]   , (28)

and

!|| = !
HP
+ 3( ) 1.0 " 0.54 #

t
+ 0.59#

t[ ]"$||    , (29)

where !
HP
,D

HP
( ) are the Hammett-Perkins values.

The real and imaginary parts of the 4-moment density response [Eq.!(27)] and kinetic

density response [Eq.!(20)] are compared in Fig.!1. The four moment model gives a good fit for

all trapped particle fractions. The fit for the parallel pressure response function is of similar

quality.  The choice of fitting point ! = 1.2  is not unique. A more accurate fit could be obtained

by adjusting the coefficients to minimize the error between the model and the kinetic density

response as was done in Ref. 6. As long as the coefficient D||  is positive the poles in the GLF
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density response model will be in the lower half frequency plane (i.e. damped). In this case

fitting the response function along the real axis is sufficient to insure that the fit will be good in

the upper half plane which is the region of interest with positive growth rates.
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Fig. 1.  Comparison of the kinetic (solid) and GLF (dashed) density response for three values of "t .

If there are no trapped particles, the Landau resonance does not produce any mixing

between the parallel and perpendicular velocities. Hence, the perpendicular pressure moment of

the perturbed distribution function [Eq.!(6)] is the same as the density moment.  In other words,

there is no perpendicular temperature perturbation induced by the parallel electrostatic wave

Eq.!(2). In the presence of trapped particles bounce averaging the Landau resonance, there is

mixing between perpendicular and parallel velocities due to the trapped passing boundary in

velocity space. This effect yields a finite perpendicular temperature perturbation from the

parallel electrostatic wave perturbation. In order to model this effect the perpendicular pressure

and energy flux moments are needed. They are defined by

� p ! =
1

2n
0
vt

2
d

3
v" v!

2 � f = #Rp!
� $    , (30)

� Q ! =
1

2n
0
vt

3
d

3
v" v||v!

2 � f = #RQT

� $    . (31)

The corresponding moment equations are

! 2"� p # +
� Q # = 0    , (32)

! 2" � Q # + � r # ,|| + gr#,||

� $ = 0    , (33)
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where

� r ! ,|| =
1

2n
0
vt

4
d

3
v" v||

2
v!

2 � f = #Rr!, ||

� $    , (34)

and the fraction in front of the potential term in Eq.!(33) is

gr!,|| =
1

2n0vt
4 d

3
vv||
2
v!
2
f0

"#"t

$ = 1%
5

2
" t
3
2 +

3

2
" t
5
2    . (35)

The electrostatic potential term can be eliminated from Eq.!(33) by changing variables to

� q ! =
� Q ! " #! � u ||  where !" = gr" ,|| gp|| and using Eq.!(13) to eliminate � u ||  giving

! 2" � q # + � r #,|| !$# � p || = 0    . (36)

The thermal stress is closed using the same form as in Ref. 4 with factors to give the correct

adiabatic limit

� r ! ,|| = "! � p || + #! � p ! $ gp!
� n ( ) $ i 2D!

k ||

k
||

� q !    , (37)

where !" ,D"  are fit coefficients and gT! = gp! gn . The fraction gp! is defined by

gp! =
1

2n0vt
4

d
3
vv!
2
f0

" #" t

$ = 1%
3

2
" t
1
2 +

1

2
" t
3
2    . (38)

This closure gives the perpendicular pressure response function (for k|| > 0)

RP! ,6 =
2" 2 # $!gT! %! + 2iD!"( )

2" 2 # $! + 2iD!"( )
%!Rn,4    . (39)

Note that for zero trapped fraction !" = #" = gT" = 1  and the ratio of polynomials in Eq.!(39)

becomes unity. Hence for no trapped particles the coefficients !" ,D"  are undetermined. The

kinetic response for the perpendicular pressure is found by performing the integrals in Eq.!(30)

over the region of passing particles using the kinetic solution [Eq.!(6)] for the perturbed

distribution function.
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The result is

R
P!

= g
p!

+ 1" # 2( )Rn " gn

       + # 2
1 +#Z #( )( ) "

#

$
t

% 

& 
' ' 

( 

) 
* * 

2

$
t

+ #Z # / $
t( )( )

+ 

, 

- 
- 

. 

/ 

0 
0 

   . (40)

Since the GLF response for the perpendicular pressure [Eq.!(39)] is factorizable it is

convenient to determine the fit coefficients !" ,D"  by fitting to the ratio R
P!

"!Rn( )  of the

kinetic response functions. A good fit is found for

D! = " 2( )# t
1
2
1.14 + 2.66#

t

1
2 $1.92#

t( )    , (41)

!" = gr",|| gp"( )# t 4.34 $ 3.35# t
1
2 + 0.44# t( )   . (42)

The physically interesting quantity is the perpendicular temperature response

RT! = RP! " gT!Rn( ) gn . The 6-moment and kinetic perpendicular temperature response

functions are compared in Fig.!2. The fit is good for all values of the trapped fraction. Particular

care was taken to maintain a good fit even for small trapped fraction by adjusting the fitting

point. Note that both fit coefficients go to zero as !
t
" 0 .  This is not inconsistent with the

perpendicular temperature closure coefficients !" = 1,D" = # 2  determined by Dorland and

Hammett [4]. They used a driven perturbation in the perpendicular temperature to determine the

fit coefficients. As already noted, the parallel electrostatic wave perturbation [Eq.!(2)] does not

produce a perpendicular temperature perturbation unless there are trapped particles. Hence, the

fit coefficients !" ,D"  found in this paper are unrelated to the ones of Ref. 4. The trapped

particle effects considered here do determine that these coefficients should vanish in the

no-trapped particle limit. This calls into question the inclusion of the finite values of Ref. 4 in the

GLF equations of Refs.!5 and 6. It may be that the toroidal drift terms require finite values for

these coefficients due to the perpendicular temperature perturbations they induce. This question

is left to consideration when the toroidal drifts are introduced into the model.
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Fig. 2.  Comparison of the kinetic (solid) and GLF (dashed) total pressure response for three values of "t .

Until now it has been assumed that all trapped particles can bounce average the Landau

resonance and hence should be excluded from the velocity integration domain. However, in

order to bounce average the Landau resonance the trapped particles must change the sign of their

parallel velocity within a half period of the wave. This is usually expressed [8] as the mode

frequency being less than the bounce frequency (approximated by the transit frequency at the

trapped-passing boundary) ! < v|| Rq  where R  is the major radius and q is the safety factor.

Turning this around, if the mode frequency exceeds the bounce frequency then the trapped

particle may be able to Landau resonate. However, it is also necessary that the parallel velocity

be able to resonate with the wave v|| =! k|| . Putting these two requirements together gives a

condition on the parallel wavenumber Rqk|| <1  in order for all trapped particles to bounce

average the Landau resonance.  This type of argument can be used to define an effective

boundary in velocity space for particles which can bounce average.  Starting with the time

derivative of the poloidal angle of a particle

d!

dt
=
v||

Rq
   . (43)

The angle traveled while the particle has an average velocity equal to the phase velocity of

the wave for a duration ! is

!" =
#$

Rqk
||

   . (44)
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A trapped particle keeps the same sign of its velocity while traveling between bounce

angles !
B

 (turning points). A minimum requirement for a trapped particle to be able to bounce

average is that it can travel more than half of an orbit (2!
B

) in half of a wave period !" = # .

This gives the condition

!" =
#

Rqk
||

> 2" B    . (45)

At the trapped-passing boundary the marginally trapped particles have !
B
= " . Thus, if k||

is such that Eq.!(45) is satisfied even for marginally trapped particles then all trapped particles

can bounce average. However, if k||  is large enough then only trapped particles with smaller

bounce angles which satisfy Eq.!(45) can bounce average. The condition Eq.!(45) can thus be

used to define a maximum bounce angle ! BA  for trapped particles which can bounce average a

particular wave

! BA = MIN
"

2Rqk
||

,"
# 

$ 
% % 

& 

' 
( (    . (46)

This in turn can be used to define the angle in velocity space at the boundary between

resonant and bounce averaging particles !BA = 1 B " BA( )  and the fraction of bounce averaging

particles ! BA  where ! BA = 1" #BAB 0( ) . Thus, the formulas in this paper can be generalized

to a bounce average rather than a trapped particle boundary simply by replacing !
t
 with ! BA .

The moment equations in this paper then include all of the circulating particles plus those

trapped particles which can Landau resonate. The moment equations for the remaining trapped

particles which can bounce average will not have any odd moments or k||  terms.
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3.  SUMMARY

The 6-moment GLF model of Ref. 4 was extended to include the reduction of Landau

damping due to bounce averaging of trapped particles. The model gives a good fit to the kinetic

response of density and perpendicular temperature to an external electrostatic wave with only a

parallel wavenumber. This model will be incorporated in an extension of the 6-moment model of

Beer and Hammett [6] which has finite perpendicular wavenumber effects as well. The details of

this extension including the diamagnetic and toroidal drifts will be given in a future publication.

The present model, with the bounce averaging boundary rather than a simple trapped particle

boundary, allows for some waves to resonate with even trapped particles. High parallel

wavenumber waves have to have a high mode frequency in order to resonate with the average

parallel velocity. This can result in a loss of bounce averaging when the mode frequency exceeds

the bounce frequency. The present model is applicable to both low frequency trapped particle

modes with bounce averaging by all trapped particles and higher frequency temperature gradient

modes which have diminished bounce averaging effects.
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