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INTRODUCTION: IMPORTANCE OF PLASMA FLOWS

● Plasma flows have important effects on tokamak stability and transport on spatial
scales ranging from the gyro-orbit scale to the machine size

— In many interesting cases, these flows are self-generated by the plasma

● For example, a key topic of present-day research is the effect of gyro-radius-scale
zonal flows on micro-turbulence-driven transport

● Somewhat larger scale flows include the changes in sheared E × B flows observed
at the L to H transition, the ERS transition and during the spin-up associated with
VH–mode

● Sheared toroidal flows have been predicted to affect MHD ballooning mode
stability [R.L. Miller, et al., Phys. Plasmas 2, 3676 (1995)]

● Toroidal flows with scales of the system size have been shown experimentally to
stabilize the resistive wall mode
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GOALS OF PRESENTATION

● Briefly cover some of the previous results on plasma flows and their effects

● Pose a series of questions to motivate later discussion
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● Resistive wall mode stabilized by plasma rotation

STABLE OPERATION WELL ABOVE THE NO-WALL β LIMIT 
HAS BEEN DEMONSTRATED IN DIII–D

— Theoretically predicted (Bondeson and Ward, 1994)
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● Below a critical rotation value, 
 RWM becomes unstable

PLASMA ROTATION DECREASES MORE SLOWLY 
WITH DECREASING ERROR FIELD AMPLITUDE
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CARBON POLOIDAL ROTATION CHANGE SHOWS CHANGE 
IN E×B FLOW PRIOR TO ERS TRANSITION IN TFTR
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● “This precursor occurs at a time before there are changes in pressure and 
 temperature associated with enhanced confinement” – R.E. Bell
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● Zero of MSE-determined Er
 chosen to match spectroscopic
 value well after ERS transition 

● Rapid change in vθ relative
 to ∇ p shows neoclassical
 vθ is not the whole story
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DENSITY FLUCTUATIONS DECREASE AS
CONFINMENT AND Er SHEAR INCREASE AS

H–MODE GOES TO VH–MODE IN DIII–D
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ROTATION REVERSES DIRECTION WITH PLASMA
CURRENT IN ALCATOR C–MOD H–MODE PLASMA

● Core Er > 0 in H–mode



ROTATION AND STORED ENERGY CHANGE
TOGETHER IN ICRF AND OHMIC H–MODES

IN ALCATOR C–MOD
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J.E. Rice et al, Nucl. Fusion 41, 277 (2001)
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CORE Er > 0 IN H–MODE AND Er < 0 IN 
H–MODE + ITB IN ALCATOR C-MOD
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J.E. Rice et al., Nucl. Fusion 41, 277 (2001)
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CORE BARRIER FORMS IN ALCATOR C–MOD
WITH OFF-AXIS ICRF BOTH INSIDE AND 

OUTSIDE MAGNETIC AXIS
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J.E. Rice et al, Nucl. Fusion 42 (2002) (to be published)

3.5 4.0 4.5 5.0 5.5

V To
r(k

m
/s

)

–0.6 –0.4 –0.2 0.0 0.2 0.4 0.6
Resonance Location (r/a)

3.5 4.0 4.5 5.0 5.5
BT (T)

n e(0
)/n

e(0
.7

)

–10

0

10

20

30

40

1.0

1.2

1.4

1.6

1.8

2.0

2.2

●   70 MHz PICRF = 1.5 MW, IP = 0.8 MA



ZONAL FLOWS SHEAR APART RADIAL TURBULENCE STRUCTURES
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● Gyro kinetic code (Gyro), toroidal geometry, shaped plasma
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ENERGETICS OF TURBULENCE/ZONAL FLOW INTERACTION
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ADDITIONAL ZONAL FLOW DRIVE IN EDGE-CORE TRANSITION REGION
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● Stringer-Windsor drive owing to magnetic field curvature plus poloidal asymmetry
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PHYSICAL CHARACTERISTICS OF ZONAL FLOWS:
TESTABLE PREDICTIONS

● Fluctuating poloidal Er×BT flows, vθ(t)

● Toroidally and poloidally symmetric: n=0, m=0

● Low frequency (<< ambient ~n, 10 kHz)

● Radially localized (k⊥ ρi ~ 0.1)

● RMS amplitude predicted to be small, vZF/vth,i ≤ 1% [T.S. Hahm, et al., PPCF 42,
A205 (2002)]

● Geodesic acoustic mode (GAM) frequency f ≈ cs/2πR [Hallatschek and Biskamp,
Phys. Rev. Lett. 86, 1223 (2001)]



2D TURBULENCE FLOW-FIELD CONSTRUCTED FROM 2D ñ MEASUREMENTS
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●  Eddies convect past spatial channels:
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ñ, AND vθ COHERENCY SPECTRA ARE DISTINCTLY DIFFERENT
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 ●  Frequency distributions distinct; frequency range similar
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ZONAL FLOW FEATURE EXHIBITS EXPECTED SPATIAL STRUCTURE
 vθ,ZF correlations have long poloidal, short radial length
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ZONAL FLOW MAGNITUDE CONSISTENT WITH PREDICTIONS
vθ, ZF/vth,i ~ 1%
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● vth,i = 150 km/s

● vθ,ZF/vth,i ~.005

 — Consistent with Hahm

  ⇒ v/vth,i ~ .01

● Broadband vturb exists in
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BICOHERENCE SHOWS ñ AND vθ PHASE COUPLING
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● Three-wave interactions with drift waves 
zonal flows (Diamond ‘91)

● Zonal flow generation mechanism should
be evident in the cross-bispectrum

● We observe a nonzero bicoherency at low
frequency
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SIMILARITY WITH 3D BRAGINSKII SIMULATION OF EDGE TURBULENCE
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● Recent work by Klaus Hallatschek (PRL 86, 1223 (2001)) simulating
 turbulence in the edge/core transition region:
 — Zonal flows here are Geodesic Acoustic Modes (GAMs)
 — Driven by pressure asymmetry on flux surface, rather than by Reynold’s Stress
 — couple to pressure perturbations (m/n=1/0) by magnetic field inhomogeneity

● Experimental indications
 — Nearly coherent zonal flows (radially and temporally)
 — f ~ 10 kHz for DIII-D edge parameters

● Suggests experimental tests:
 — Dependence on ion temperature
 — Dependence on plasma shaping/curvature
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HEAVY ION BEAM PROBE MEASUREMENTS OF
POSSIBLE ZONAL FLOWS

● As was pointed out by P. Schoch (APS, 2001), HIBP systems on many devices
(TEXT, JIPP TII-U, ISX-B) have long seen fluctuations in the 20 to 50 kHz range
which were not understood

— TEXT data indicate these may be geodesic acoustic modes

● Retrospective analysis of TEXT results from 1990 show

— Er fluctuations are consistent with m=0 poloidal structure

— Correlation of these Er fluctuations with density fluctuations is weak

— Frequency is consistent with GAM frequency over a range of radii

— Er fluctuations seen only for 0.6 ≤ r/a ≤ = 0.95 in discharges studied

— No Er significant fluctuations at smaller or larger radii

— Correlation length is short, about the sample volume size



FREQUENCY OF Er FLUCTUATIONS IN TEXT 
AGREES WITH GAM FREQUENCY
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ZONAL FLOW QUESTIONS

● Do the theoretically predicted zonal flows really exist?

— What criteria do we use to decide that zonal flows have been observed?

● Do detailed zonal flow properties really agree with theory?

— Why is the geodesic acoustic mode experimentally so obvious compared to the f ≅ 0

zonal flow?

● How do we best measure the zonal flow’s properties experimentally?

— Can we distinguish f ≅ 0 zonal flows from mean flows?

● What are the relative roles of Reynold’s stress and Stringer-Windsor drive in
various plasma regions?



NATIONAL FUSION FACILITY
S A N  D I E G O

DIII–D
094-02/KHB/ci

POLOIDAL FLOW QUESTIONS

● What physics governs the mean poloidal flows in the plasma?

● What is the role of the physics described by neoclassical theory?

— May need to include collisions with fast ions (W. Houlberg, 2002)

● What additional physics, if any, is needed to understand how the spontaneously
generated poloidal rotation arises, for example, at the ERS transition?

— G.M. Staebler, Phys. Rev. Lett. 84, 3610 (2000)

● How can we best test the neoclassical theory?



IN H–MODE EDGE IN DIII–D, MAIN ION AND CARBON POLOIDAL
ROTATION DISAGREE WITH NEOCLASSICAL PREDICTION
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● Helium plasma [Ip = 1 MA, BT = 2T, ne = (1–4) × 1019 m–3]
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TOROIDAL ROTATION QUESTIONS

● What physics governs the mean toroidal flow in the plasma?

● Does neoclassical theory play any role here?

— Even in ITB cases where the ion thermal diffusivity is neoclassical, the
toroidal angular momentum diffusivity exceeds neoclassical by about a factor
of 50

— What physics must be added to that in neoclassical theory to understand
this?

● How do we understand toroidal flow generation in the core of C-Mod plasmas in
the apparent absence of toroidal torque?

● What role do MHD modes play in governing the toroidal plasma rotation?

— Are MHD modes only important near beta limits?

— How do we isolate the effects of MHD modes experimentally?
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TURBULENCE AND TRANSPORT CONTROL TECHNIQUES

● What new tools can we develop to locally reduce turbulence-driven transport by
altering plasma flows?

— Present control tools (e.g. NBI) are crude and act over broad regions

— Control is the ultimate demonstration of understanding
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DIAGNOSTIC DEVELOPMENT ISSUES AND QUESTIONS

● How can we best use synthetic diagnostics from modeling codes?

● Need to develop improved experimental techniques to measure the zonal flow over
wider regions of the plasma

— Need larger poloidal and radial range

— Improved signal-to-noise

● Must refine the analysis techniques needed to compute the gyro-orbit cross
section effect on poloidal rotation measurements and then verify the calculations
experimentally in order to test neoclassical poloidal rotation theory properly

● Improve techniques to measure MHD modes (e.g., resistive wall modes and Alfvén
modes) which can affect rotation



FREQUENCY SPECTRUM IN ALFVEN FREQUENCY
RANGE IS EXTREMELY RICH
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REFLECTOMETER DATA INDICATE THE CORE QUASI-COHERENT
MODES ARE LOCALIZED TO ρ ≈ 0.0–0.4
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CONCLUSION

● Plasma flows have important effects on tokamak stability and transport on spatial
scales ranging from the gyro-orbit scale to the machine size

— In many interesting cases, these flows are self-generated by the plasma

● Key open questions include theory and experimental measurements in the
areas of

— Zonal flows

— Poloidal and toroidal rotation

— Coupling of rotation and MHD modes


