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INTRODUCTION: IMPORTANCE OF PLASMA FLOWS

e Plasma flows have important effects on tokamak stability and transport on spatial
scales ranging from the gyro-orbit scale to the machine size

— In many interesting cases, these flows are self-generated by the plasma

e For example, a key topic of present-day research is the effect of gyro-radius-scale
zonal flows on micro-turbulence-driven transport

e Somewhat larger scale flows include the changes in sheared E x B flows observed
at the L to H transition, the ERS transition and during the spin-up associated with
VH-mode

e Sheared toroidal flows have been predicted to affect MHD ballooning mode
stability [R.L. Miller, et al., Phys. Plasmas 2, 3676 (1995)]

e Toroidal flows with scales of the system size have been shown experimentally to
stabilize the resistive wall mode
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GOALS OF PRESENTATION

e Briefly cover some of the previous results on plasma flows and their effects

e Pose a series of questions to motivate later discussion
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STABLE OPERATION WELL ABOVE THE NO-WALL 3 LIMIT
HAS BEEN DEMONSTRATED IN DIII-D

e Resistive wall mode stabilized by plasma rotation

— Theoretically predicted (Bondeson and Ward, 1994)
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PLASMA ROTATION DECREASES MORE SLOWLY
WITH DECREASING ERROR FIELD AMPLITUDE
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HIBP MEASUREMENTS IN JFT2-M SHOW ExB FLOW CAN CHANGE
IN 10 us AT THE L TO H TRANSITION

® ExB flow changes before profiles change
—E=-VO

Separatrix

L 1 N - - -
748 750 753 -4 -3 -2 -1 0 1 2
Time (ms) ds (cm)

T. Ido et al, Phys. Rev. Lett. 88, 055006-1 (2002)

- sX (aw) :
0.0k — = {i@_—
05 AT REaEE e

0.0
-0.5 ¢2(..)..|. ' | I i i B L el
720 725 730  735___.740----T45 750 ~~755 760
------------- Time (ms) Sray
0407 T A
0.00 ' b2 (V) 3
-0.25 P TP PR T . g
14 e - " " T PR ' 3
_"Jiﬂflh”%ﬁi.hrﬂwwlﬂ ; e -*—r*q'“‘r:
06E , - ] \ ) g s1 (M ) -
12" "7 7T T TN LA L S
?Hﬁhwhw“wwwf"w@% lso (nA) =
04F IR (AR
10" "7 L7 ST N TS
ey w““—wr”“ﬁﬂhwmm . ls3 (1A)
0.2E. TR Las o :
749 749.5 750 750.5
Time (ms)

094-02/rs



CARBON POLOIDAL ROTATION CHANGE SHOWS CHANGE
IN EXB FLOW PRIOR TO ERS TRANSITION IN TFTR

e “This precursor occurs at a time before there are changes in pressure and
temperature associated with enhanced confinement” — R.E. Bell
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MSE AND SPECTROSCOPY DETERMINE SAME Ey
CHANGE AT ERS TRANSITION IN TFTR

e Zero of MSE-determined E, € —F o]
chosen to match spectroscopic g _100 F L D[gl(eZn) i
value well after ERS transition m |
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DENSITY FLUCTUATIONS DECREASE AS
CONFINMENT AND Er SHEAR INCREASE AS
H-MODE GOES TO VH-MODE IN DIlI-D
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ROTATION REVERSES DIRECTION WITH PLASMA
CURRENT IN ALCATOR C-MOD H-MODE PLASMA

e Core E;>0inH-mode
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ROTATION AND STORED ENERGY CHANGE
TOGETHER IN ICRF AND OHMIC H-MODES
IN ALCATOR C-MOD
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CORE E; >0 IN H-MODE AND E; <0 IN
H-MODE + ITB IN ALCATOR C-MOD
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CORE BARRIER FORMS IN ALCATOR C-MOD
WITH OFF-AXIS ICRF BOTH INSIDE AND
OUTSIDE MAGNETIC AXIS

o 70 MHz Pjcrg = 1.5 MW, Ip = 0.8 MA

Resonance Location (r/a)
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ZONAL FLOWS SHEAR APART RADIAL TURBULENCE STRUCTURES

e Gyro kinetic code (Gyro), toroidal geometry, shaped plasma

J. Candy, R.E. Waltz, J. Comp. Phys. (submitted)
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ENERGETICS OF TURBULENCE/ZONAL FLOW INTERACTION

- Reynolds
ree Stress
Energy Turbulence Drive Zonal Flow

Flow shear decorrelation

P. Diamond et al., Phys. Fluids B 3, 1626 (1991)
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ADDITIONAL ZONAL FLOW DRIVE IN EDGE-CORE TRANSITION REGION

e Stringer-Windsor drive owing to magnetic field curvature plus poloidal asymmetry

P Poloidal
Variation

B Field
Curvature

Flow shear decorrelation

Hallatschek and Biskamp, PRL 86, 1223 (2001)
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PHYSICAL CHARACTERISTICS OF ZONAL FLOWS:
TESTABLE PREDICTIONS

e  Fluctuating poloidal ErxBT flows, ve(t)

e Toroidally and poloidally symmetric: n=0, m=0
e Low frequency (<< ambient n, 10 kHz)

e Radially localized (kgpj ~ 0.1)

e RMS amplitude predicted to be small, vzr/vih j < 1% [T.S. Hahm, et al., PPCF 42,
A205 (2002)]

e (Geodesic acoustic mode (GAM) frequency f = cs/2mR [Hallatschek and Biskamp,
Phys. Rev. Lett. 86, 1223 (2001)]
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2D TURBULENCE FLOW-FIELD CONSTRUCTED FROM 2D h MEASUREMENTS

Poloidal Cross Section of Tokamak
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N, AND vg COHERENCY SPECTRA ARE DISTINCTLY DIFFERENT

e Frequency distributions distinct; frequency range similar
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ZONAL FLOW FEATURE EXHIBITS EXPECTED SPATIAL STRUCTURE

Ve,zF correlations have long poloidal, short radial length
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/ONAL FLOW MAGNITUDE CONSISTENT WITH PREDICTIONS
Vg, ZF/Vth,i ~ 1%
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BICOHERENCE SHOWS i AND Vg PHASE COUPLING

e Three-wave interactions with drift waves
zonal flows (Diamond ‘91)

e Zonal flow generation mechanism should
be evident in the cross-bispectrum
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e We observe a nonzero bicoherency at low
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SIMILARITY WITH 3D BRAGINSKII SIMULATION OF EDGE TURBULENCE

e Recent work by Klaus Hallatschek (PRL 86, 1223 (2001)) simulating
turbulence in the edge/core transition region:
— Zonal flows here are Geodesic Acoustic Modes (GAMS)
— Driven by pressure asymmetry on flux surface, rather than by Reynold’s Stress
— couple to pressure perturbations (m/n=1/0) by magnetic field inhomogeneity

e Experimental indications
— Nearly coherent zonal flows (radially and temporally)
— f~ 10 kHz for DIII-D edge parameters

e Suggests experimental tests:
— Dependence on ion temperature
— Dependence on plasma shaping/curvature

DII-D Jakubowski, McKee, Fonck APS, 2001 5 7/.\VE

IIIIIIIIIIIIIIIIIIIIII

103-02/rs



HEAVY ION BEAM PROBE MEASUREMENTS OF
POSSIBLE ZONAL FLOWS

e Aswas pointed out by P. Schoch (APS, 2001), HIBP systems on many devices
(TEXT, JIPP TlI-U, ISX-B) have long seen fluctuations in the 20 to 50 kHz range
which were not understood

—  TEXT data indicate these may be geodesic acoustic modes

e Retrospective analysis of TEXT results from 1990 show

—  Er fluctuations are consistent with m=0 poloidal structure

—  Correlation of these Ey fluctuations with density fluctuations is weak
— Frequency is consistent with GAM frequency over a range of radii

—  Er fluctuations seen only for 0.6 < r/fa < =0.95 in discharges studied
— No E; significant fluctuations at smaller or larger radii

—  Correlation length is short, about the sample volume size

DIl-

NATIONAL FUSION FACILITY 094-02/KHB/ci
SAN DIE 6o



FREQUENCY OF Er FLUCTUATIONS IN TEXT

AGREES WITH GAM FREQUENCY
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ZONAL FLOW QUESTIONS

e Do the theoretically predicted zonal flows really exist?

— What criteria do we use to decide that zonal flows have been observed?

e Do detailed zonal flow properties really agree with theory?

—  Why is the geodesic acoustic mode experimentally so obvious compared to the f (10
zonal flow?

e How do we best measure the zonal flow’s properties experimentally?

—  Can we distinguish f 10 zonal flows from mean flows?

e What are the relative roles of Reynold’s stress and Stringer-Windsor drive in
various plasma regions?
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POLOIDAL FLOW QUESTIONS

e What physics governs the mean poloidal flows in the plasma?

e What is the role of the physics described by neoclassical theory?

— May need to include collisions with fast ions (W. Houlberg, 2002)

e What additional physics, if any, is needed to understand how the spontaneously
generated poloidal rotation arises, for example, at the ERS transition?

—  G.M. Staebler, Phys. Rev. Lett. 84, 3610 (2000)

e How can we best test the neoclassical theory?
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IN H-MODE EDGE IN DIlI-D, MAIN ION AND CARBON POLOIDAL
ROTATION DISAGREE WITH NEOCLASSICAL PREDICTION

e Helium plasma [IIO =1MA, By =2T, ng = (1-4) x 1019 m=9]
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TOROIDAL ROTATION QUESTIONS

e What physics governs the mean toroidal flow in the plasma?

e Does neoclassical theory play any role here?

— Evenin ITB cases where the ion thermal diffusivity is neoclassical, the
toroidal angular momentum diffusivity exceeds neoclassical by about a factor
of 50

—  What physics must be added to that in neoclassical theory to understand
this?

e How do we understand toroidal flow generation in the core of C-Mod plasmas in
the apparent absence of toroidal torque?

e What role do MHD modes play in governing the toroidal plasma rotation?

—  Are MHD modes only important near beta limits?

— How do we isolate the effects of MHD modes experimentally?
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TURBULENCE AND TRANSPORT CONTROL TECHNIQUES

e What new tools can we develop to locally reduce turbulence-driven transport by
altering plasma flows?

— Present control tools (e.g. NBI) are crude and act over broad regions

— Control is the ultimate demonstration of understanding
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DIAGNOSTIC DEVELOPMENT ISSUES AND QUESTIONS

e How can we best use synthetic diagnostics from modeling codes?

e Need to develop improved experimental technigues to measure the zonal flow over
wider regions of the plasma

— Need larger poloidal and radial range

— Improved signal-to-noise

e Must refine the analysis technigues needed to compute the gyro-orbit cross
section effect on poloidal rotation measurements and then verify the calculations
experimentally in order to test neoclassical poloidal rotation theory properly

e Improve techniques to measure MHD modes (e.g., resistive wall modes and Alfvén
modes) which can affect rotation
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FREQUENCY SPECTRUM IN ALFVEN FREQUENCY
RANGE IS EXTREMELY RICH

FIR Scattering Data
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REFLECTOMETER DATA INDICATE THE CORE QUASI-COHERENT
MODES ARE LOCALIZED TO p=0.0-0.4

Frequency spectrum evolution of fixed frequency reflectrometer data
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CONCLUSION

e Plasma flows have important effects on tokamak stability and transport on spatial
scales ranging from the gyro-orbit scale to the machine size

— In many interesting cases, these flows are self-generated by the plasma

e Key open questions include theory and experimental measurements in the
areas of

—  Zonal flows
— Poloidal and toroidal rotation

—  Coupling of rotation and MHD modes
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