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In plasmas where the turbulent processes are dominated by turbulence, it is not
always straight forward to identify the magnitude of the experimental transport
diffusion coefficients.  This is primarily due to the fact that with turbulent
transport it is not possible to unambiguously separate the convective from the
conductive or diffusive parts of the transport.  For the energy transport it is not
just a matter of deciding whether the convection term is 5/2 or 3/2 times the
product of the particle flux and the temperature.  The expression for the
convection term depends upon the type of turbulence which is causing the
transport.   In cases where the turbulence induced stresses cause significant
radial flows, the definition of the conductive term must be modified from the
usual definition.

*Work supported by U.S. Department of Energy under Contract DE-AC03-99ER54463.



In order to have a correct definition of χi,
which is consistent with DIII-D
experimental results, it is necessary to
include the effects of the turbulence
induced stresses in both the particle and
energy fluxes.



Start From First Four Moments of General Kinetic
Equation   (ignore explicit collisional terms and consider only single ion fluid)
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“Conventional” Approach
Ensemble average, take Steady State and neglect some terms
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Note:  “conventional” approach assumes that R is a scalar and ignores Reynolds stress
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The “conventional” approach
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For “correct” calculation of PARTICLE FLUX you
must use,
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Compare approximate sizes of ΓS r
 and ΓE r

It is difficult to estimate the size and direction of ΓE r
,

Since they depend critically upon the phase between ˜   ˜n Eand v  .

But it is a reasonable assumption that ΓE r
 is outward and is

not larger than the total particle flux,
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* as the total outward particle flux.



We estimate the size of 
r
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 from one of its largest terms,

(note: ˜   ˜u and u rr ∂ ∂θ  are approximately in phase)
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“Correct” ENERGY FLUX

The energy flux also has stress related terms
Instead of using R (a scalar), we must use,
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Analogous to the particle flux, we conclude that

QS is not negligible compared to QE



Steady State Energy Conservation Equation
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˜ṽ Γ  ;

If Q and then q n TS S cond E r
   . ,   ˜ ˜Γ = ≈0 0

3

2
v ,  (this is the “conventional” result)

But if QS and S do ate then     min ,  Γ   (by usual TRANSP definition)

q Q Tcond S S≈ − 5
2

Γ

and this qcond can be negative     .      (See discussion of Experimental Results)



It can be shown that Q Dn
T

TS S≈ − +3
2

3
2

∂
∂ρ

Γ ,  (from Drift Kinetic Equation).

This results in

− + + + = ∫
3
2

1
2

3
2

3
2

1
Dn

T
T n T T

V
dV SS E r E m

∂
∂ρ εΓ Γ˜ṽ
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EXPERIMENTAL RESULTS



For Some DIII-D Plasmas, using the usual TRANSP

definition for qcond  (q
V

dV S Tcond m r≡
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2ε   Γ ),

results in negative χis in some regions of the plasma

0.0 0.2 0.4 0.6
Normalized Minor Radius  ρN

χi Neo (Chang-Hinton)

Experimental χi from TRANSP

0.8

100.000

10.000

1.000

χ i  ( m
2 /s

)

0.100

0.010

0.001
1.0

072-02 vg 2 jy
S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY



The total outward ion energy flux is positive, but the
“conductive” part is negative in some regions
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Defining qcond as,  q
V
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results in a χi that is positive everywhere and
not significantly less than the

Chang-Hinton neoclassical value
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The Chang-Hinton Neoclassical diffusivity may not be valid
near the origin.  χi,neo (modified) is the Chang-Hinton value
reduced by the factor (1-(1-r/3rp)2), as derived in:

Bergmann, A.G. Peeters and S.D. Pinches, Phys. Plasmas 8, 5192 (2001)

where, rp is 1.6 times the potato orbit width of 2
2 3
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CONCLUSIONS
•  The turbulence induced stress makes a major contribution to

the particle flux

•  The turbulence induced energy stress makes a major
contribution to the energy flux
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Velocity Ordering in DIII-D
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