ABSTRACT SUBMISSION FORM ISFNT-6 7-12 APRIL, 2002

Please return this completed form with each abstract to Claudia Hennessy (via email is preferred) before August 7, 2001 to: chennessy@vlt.ucsd.edu or via website at: http://cer.ucsd.edu/isfnt.html.

Ms. Claudia Hennessy Center for Energy Research University of California, San Diego 9500 Gilman Drive, MC 0420 La Jolla, CA 92093-0420 USA Tel: 001-858-534-4971 Fax: 001-858-534-5440

Title (160 characters max):

ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

Proposed topics:	2 — INVITED			
Preference of Presentation:	ORAL			
First Author:	Dr. C.P.C. Wong			
Presenting Author: Last Name	Dr. C.P.C. Wong			
Presenting Author's Affiliation:	General Atomics			
P.O. Box/Street address:	P.O. Box 85608			
City, State, Zip Code:	San Diego, California 92186-5608			
Country:	USA			
Tel.: (858) 455-4258	Fax: (858) 455-2838			
E-mail: wongc@fusion.gat.com				
Additional Author(s) & Affiliations:				
S. Malang	Forschungeszentrum Karlsruhe, Germany			
S. Nishio	Japanesse Atomic Energy Research Institute Japan			
R. Raffray	University of California, San Diego La Jolla, California			
A. Sagara	National Institute for Fusion Science Toki, Japan			

Please send this form with your abstract before August 7, 2001	Receipt of Abstract To be filled by Local Organizing Committee	
Date Submitted:	Abstract #:	Secretary Signature:

ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS*

C.P.C. WONG,¹ S. MALANG,² S. NISHIO,³ R. RAFFRAY,⁴ A. SAGARA⁵

¹General Atomics, P.O. Box 85608, San Diego, California, USA; ²Forschungszentrum Karlsruhe, Germany; ³JAERI, Dept. of Fusion Plasma Research, Naka Fusion Research Establishment, Mukouyama Naka-machi Naka-gun Ibaraki-kenn, Japan; ⁴FERP, EBU-II, University of California, La Jolla, California, USA; ⁵LHD Project, National Institute for Fusion Science, Toki, Japan

Abstract: First wall and blanket design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected first wall and blanket design will have to match the operation scenarios for high performance plasmas. The key characteristics of six advanced high performance blanket concepts are summarized in the following table.

	TAURO	ARIES-AT	A-SSTR-2	W/Li/He	EVOLVE	FFHR-2
Application	Tokamak	Tokamak	Tokamak	Tokamak	Tokamak	Stellerator
Structural	SiC _f /SiC	SiC _f /SiC	SiC _f /SiC	W-alloy	W-alloy	V-4Cr-4Ti
material	composite	composite	composite			
Tritium breeder	LiPb (none)	LiPb (none)	Li ₂ TiO ₃	Li (none)	Li (none)	Flibe (Be)
(Multiplier)			(Be)			
Breeder form	Liquid	Liquid	Pebbles	Liquid	Liquid	Liquid
Coolant	LiPb	LiPb	He	He	Vaporized Li	Flibe
Local TBR (Li-6	1.37(90%)	1.1 "3-D"	1.37	1.43 (35%)	1.33 (natural)	1.4 (50%)
enrichment)		(natural)	(natural)			
Ave. FW heat	0.5/0.69	0.26	1.4	2 (peak)	2 (peak)	0.25
flux, MW/m ²						
Neutron wall	2/2.8	3.2 (Avg.)	6 (Avg.)	10 (peak)	10 (peak)	1.7 (Avg.)
loading,						
MW/m ²						
Coolant Tout,	860	1100	900	1100	1200	700
°C						
Thermal eff., %	47	58.5	50	57.5	57	45

This paper will review the configuration, performance characteristics and advantages of these advanced conceptual designs. Unique properties and critical issues of these designs will also be summarized.

^{*}Work supported by U.S. Department of Energy under Contract No. DE-AC03-98ER54411.