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ABSTRACT

We are studying novel oblate or doublet FRCs that
may make desirable fusion reactors. However, their
stability and confinement are uncertain and must be
understood. Motivated by recent theoretical work showing
that weak, axially antisymmetric toroidal magnetic fields
are stabilizing, an experiment, SSX–FRC, is being
prepared to test this and other ideas. The FRCs will be
produced by merging spheromaks. External coils will
control the degree of spheromak reconnection and thus the
internal toroidal magnetic field. Partially reconnected CTs
or doublet CTs can be either FRCs or spheromaks. Both
doublet and conventional CTs are investigated with a new
Grad-Shafranov equilibrium code. Analytical work shows
that FRC rotation may initiate self-generation of the
antisymmetric toroidal B. A steady-state D–3He fusion
reactor concept is outlined.

INTRODUCTION

Field Reversed Configurations1 (FRCs) offer notable
potential advantages for fusion reactors, especially
axisymmetric toroidal plasma confinement at high β (β ~
1) in a topology that allows free plasma exhaust and rela-
tively easy maintenance. Furthermore, the high β, low
synchrotron emission and unobstructed exhaust stream
with direct power conversion might make D-3He fusion
reactors possible. High efficiency, high–Q power reactors
with long-lived components appear to be more readily
attainable with steady-state, rather than pulsed, operation.
However, steady-state wall technology sets power density
limits and requires larger energy confinement times τE
than traditional pulsed FRC reactor concepts. Long τE
requires large values of s (s = ρ*

1−  = number of ion gyro-
radii contained in the plasma), whereas traditional FRCs
have small s. Conventional FRCs are highly prolate,1 but
if radial thermal transport is diffusive, τE depends mainly
on the square of the shortest distance between the hot core
and the cool edge.2  Thus, approximately-spherical
geometry yields the lowest power, most compact steady-
state FRC fusion reactors. Therefore, we are investigating
relatively short FRCs and their stability, both oblate FRCs
and two partially reconected FRCs or doublet FRCs.

No fusion concept based on magnetic plasma
confinement is viable without good stability and low

anomalous transport. Various MHD and kinetic linear
calculations predict the FRC to be unstable to the tilt (m,n)
= (1,1) mode except at very low values of s. Nonlinear
calculations show unsaturated mode growth and plasma
destruction. In stark contrast, experimental FRCs are
anomalously stable to the tilt. However, they exhibit large
anomalous transport.

Recent theoretical and experimental advances suggest
that stable, low-transport-rate FRCs may indeed exist.
Numerical studies show stabilization of tilt and shift
modes in oblate PRCs by a close fitting conducting shell3

under conditions also favorable to stabilization of the high
(m,n) interchange modes,4 all in the large-s MHD fluid
limit relevant to steady-state. However, oblate FRCs with
no nearby wall are not simultaneously stable to both tilt
and shift.3 Furthermore, hybrid simulations (kinetic ions,
fluid electrons) reveal near stabilization of the tilt by a
combination of spontaneously generated weak toroidal
magnetic fluxes and associated strong poloidal ion flows5

in the absence of a nearby conducting boundary. The
toroidal fluxes are generated during the computed FRC
formation by the Hall effect, wherein poloidally sheared
toroidal electron flow stretches the poloidal field lines of
B into the toroidal (φ) direction.6,7,5 Figure 1, from
Ref. [5], shows that Bφ is distributed antisymmetrically (+
and –) in the axial (z) direction with peak values ~30% of
the poloidal component Bp. The net toroidal flux is zero.
Newer hybrid simulations with additional modes included
in the computation show instability of n > 1 modes, but
they saturate, and a new, lower–s FRC emerges.8 All the
hybrid computations were done without the benefit of a
close–fitting conductor.

Recent experiments have scaled up rotating magnetic
field (RMF) current drive in a fully ionized FRC plasma.9

This not only demonstrates one solution to the FRC
current drive problem, but unexpectedly, RMF also quiets
internal magnetic fluctuations and greatly increases energy
and particle confinement times.10 Improved confinement
is also observed in the FIX experiment, where neutral
beam injection increases the configuration lifetime.11

The predicted tilt stabilization by internal toroidal
fluxes leads us to investigate this and other novel FRC
plasmas. In this paper we describe modifications to the
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Fig. 1.  Βφ normalized to the separatrix midplane value of
B. Adapted from Ref. [5].

Swarthmore Spheromak Experiment (SSX)12 to produce
FRCs with central + and – Bφ and study their stability in
the light of the Ref. [5] hybrid simulations. The FRCs will
be formed by partial merging of two counterhelicity
spheromaks. Flux from external reconnection control coils
(RCCs) will control the extent of spheromak reconnection
and thus the residual + and – Bφ. The resulting doublet CT
configuration has two magnetic axes and an indented
equator and is itself a novel configuration. We describe a
new finite-element, Grad-Shafranov, free boundary
equilibrium code, written to design the SSX RCCs, and
we discuss results and conclusions from this code. We
show analytically that centrifugal density stratification
may initiate antisymmetric Bφ growth in a rotating FRC.
Since experimental FRCs rotate, spontaneous Bφ
generation may be ubiquitous, and it may not be necessary
to drive Bφ from outside. Finally, we outline a D-3He
reactor based on a steady-state oblate FRC.

THE SSX–FRC EXPERIMENT

SSX is presently being modified into SSX–FRC, to
make FRC plasmas. The merging counterhelicity
spheromaks technique, pioneered on TS–3,13 will be used,
but, unlike TS–3, there is no central solid core in SSX–
FRC. The modified machine and its operation are
illustrated in Fig. 2. The spheromaks are injected into a
cylindrical copper flux conserver by two opposing
magnetized coaxial guns, one at each end of the conserver.
The conserver flux diffusion time is much longer than the
plasma lifetime. Flux from external reconnection control
coils (RCCs) will be frozen into the conserver to control
the extent of spheromak reconnection. As illustrated in the
figure, this makes a doublet CT equilibrium with two
central private flux regions bounded by a figure-eight
separatrix. The opposing spheromak Bφ are expected to
annihilate in the common flux surrounding the internal
separatrix, as during reconnections in TS–3, making an
FRC–like plasma confined by Bp alone in that region.
Toroidal B is expected to persist inside the unreconnected
private regions and leave the residual + and – Bφ from the
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Fig. 2.  Schematic of SSX–FRC with reconnection control
coils (RCCs) and a new flux conserver.

spheromaks in the private regions. SSX-FRC plasmas are
expected to have s~5. The CT should have many features
of the theoretical Bφ-stabilized FRCs.5 However, the
experimental internal Bφ will be large (~Bp) rather than
weak, at least initially.

The elongation (length/diameter = Lc/Dc) of the
SSX–FRC flux conserver, 635 mm/406 mm = 1.56, is
deliberately large enough that single-axis CTs are tilt
unstable (critical L/D = 0.83 for a single relaxed
spheromak), in order to study tilt instability. The
equatorial RCC is inside the vacuum chamber in order to
be close enough to the plasma to provide the desired shape
control. End coils control end geometry, which otherwise
is dominated by the fringe field of the gun magnetizing
coils. The combined current in the three coils controls the
radial gap between the outer separatrix and the conserver.
Single-axis FRCs will also be made and investigated. The
principle diagnostic for both equilibrium and MHD
stability is a set of 600 magnetic probes grouped as 200
three-axis triplets. A Mach probe will measure plasma
velocity. Companion papers by M. Brown and C. Cothran
in this Workshop give additional information about SSX
and SSX–FRC. SSX–FRC will be a flexible facility for
FRC research.

NEW CT EQUILIBRIUM CODE AND RESULTS

A new Grad–Shafranov equilibrium solver was
written to study SSX–FRC CT equilibria and, in
particular, to investigate the sensitivity of the plasma
internal flux fraction to the RCC currents and positions.

The Grad–Shafranov equation in the form

R
R R R z

R p ff RJo o
∂

∂
∂ψ
∂

∂ ψ
∂

µ µ φ
1 2

2
2




+ = − ′ − ′ = −    , (1)

describes static axisymmetric toroidal equilibria. Pressure
p and poloidal current f = RBφ are functions of the
poloidal flux ψ, and ´ means d/dψ. Eq. (1) is solved using
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the finite element partial differential equation tools in
Matlab®. The computational domain is bounded by a
right circular cylinder flux-conserver, and symmetry is
imposed about the midplane. A set of specified current
loops impresses a frozen flux into the conserver, and the
free boundary solution is determined by solving Eq. (1) by
Picard iteration. Iteration begins with a crude initial guess
of Jφ(R,z) and proceeds by solving Eq. (1) for ψ, given the
most recent Jφ(R,z). Then, Jφ(R,z) is recalculated from
this ψ through p(ψ) and f(ψ). At each Jφ calculation the
scale factors multiplying the p and f profile functions are
adjusted to keep the total toroidal plasma current equal to
a specified current, Iplas. This procedure is simple and
well behaved.14 The code has run on a desktop PC and on
desktop and laptop Macintosh® computers.

The code was validated against fixed boundary
analytical solutions for a cylindrical Woltjer–Taylor
relaxed spheromak (p = 0, f ~ ψ); a Solovev equilibrium15

( ′p  - const., ff ′  = const.); and a separable cylindrical FRC
solution16 (p ~ ψ2, f = 0).

Free boundary equilibria are presently generated by
specifying p and f as powers of ψ inside the bounding
separatrix (the separatrix is at ψ = 0), and p = f = 0 in the
vacuum region outside it. Separate specifications of p and
f inside and outside the internal separatrix are needed to
properly represent the SSX–FRC plasmas, which are
expected to have f ≈ 0 outside it and p´ ≈ 0 inside it.
However, this capability is not yet implemented.

Figure 3 shows an example of two partially merged
doublet CT equilibria calculated in the SSX–FRC flux
conserver with frozen fluxes produced by four RCCs. The
end coils are located as shown in Fig. 2, but the equatorial
coil is split into two coils in Fig. 3 to allow radial
diagnostic access between them. These FRC equilibria
have moderately peaked pressure profiles, p ~ ψ1.5, and f
= 0. Both equilibria have Iplas = 100 kA. They differ only
in the current in the equatorial loops used to establish the
frozen flux, 8 kA (in two coils) in the first case and 13 kA
in the second. Each end coil carries 1.3 kA. The midplane
coil current in the first case lets 84% of the poloidal flux
reconnect, but the higher current in the second case lets
only 46% reconnect. Therefore, the RCCs can regulate the
degree of equilibrium reconnection. Two-dimensional
evolution of the reconnection has been studied by TRIM
simulations.17 Stability of these equilibria will be studied
in the future.

For more peaked pressure profiles, p ~ ψ2, the
equilibria change rapidly between weakly reconnected and
highly reconnected while the equatorial flux-setting coil
current(s) vary only slightly, indicating that it may be
more difficult to control reconnecting CTs having peaked
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0
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Fig. 3.  Computed partially reconnected FRC equilibria in
the SSX–FRC flux conserver. Only half of an equilibrium
is plotted. Locations of two current loops, representing a
split equatorial coil, are indicated in the top figure. Only
the equatorial coil currents differ, and the reconnected
fluxes are 84% (top) and 46% (bottom).

pressure profiles. For slightly less peaked profiles, p ~
ψ1.75, the reconnected flux fraction depends reasonably
on the equatorial coil current, and reconnection control
becomes progressively less sensitive as the pressure
profile peaking exponent is decreased. It is not yet known
what pressure profiles will be produced in SSX–FRC.
Conventionally formed FRCs have broad pressure
profiles, and they usually have hollow current profiles.
Such plasmas would be easy to shape using externally
applied magnetic fluxes.

Conventional single-axis elongated FRC equilibria in
a long cylindrical flux conserver have also been calcu-
lated. Figure 4 shows two equilibria from a sequence with
increasing Iplas. All are inside a flux conserver, (Lc/Dc) =
(2 m/0.4 m) containing an initial uniform 1 T magnetic in-
duction. All have p ~ ψ . The FRC midplane separatrix
radius Rs remains nearly constant while the separatrix
length Ls increases almost linearly with increasing Iplas,
except for very short or very long (near the conducting
end plate) plasmas. The ratio xs = Rs/Rc is 0.825 in the
linear Ls/Iplas regime. This is in good agreement with the
analytic condition for axial equilibrium,18,19 xs = [2(1 –
βx)]1/2  = (2/3)1/2 ≈ .8165, where the midplane cross-
section-averaged beta, βx, is 2/3 for p ~ ψ.

Figure 5 shows two equilibria with peaked profiles, p
~ ψ2. Here Ls, grows only weakly with increasing Iplas,
even though Iplas spans a range of 30/2. This is
understood in terms of axial equilibrium. For p ~ ψ2 the
analytic βx is 1/2 for high elongation, so axial equilibrium
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Fig. 4.  Computed FRC equilibria in a long cylindrical
flux conserver, for p ~ ψ and two values of Iplas.

requires xs = 1. Higher Iplas mainly increases the
magnitude of B, in order to compress the constant vacuum
flux ever more tightly against the conserver to drive xs
toward unity. Profiles more peaked than p ~ ψ2 have βx <
1/2 and do not elongate, because the plasma pressure
cannot overcome the axial magnetic tension.

DOUBLET CT

The doublet CT, with or without internal Bφ, is a
novel plasma configuration. Little is known yet how it
will behave. Here we discuss interchange stability
qualitatively. Interchange instability is driven by ∇ p with
bad curvature. In the absence of Bφ, each magnetic line
closes on itself, and plasma compressibility and good
curvature are the only stabilizing effects. Near the
bounding separatrix, average curvature is bad, but flux
tube specific volume decreases rapidly inward, providing
stabilization by compressibility. This is the same as in
conventional FRCs.4 Just outside the figure-eight
separatrix the average curvature is good and is stabilizing.
Inside the private regions average curvature is again bad,
but specific volume variation again gives compressibilty
stabilization. There is a surface in the common region
where neither curvature nor compressibility stabilize the
mode, so the pressure gradient might be low there.
Doublet CTs will be studied experimentally in SSX–FRC.

SELF Bφ GENERATION IN ROTATING FRCS

Toroidal magnetic field may be desirable in FRCs for
stability, as argued in the Introduction. In this Section we
demonstrate two two-fluid mechanisms, radial density
gradient and Hall effect, by which centrifugal density
stratification in a toroidally rotating FRC might drive anti-
symmetric ∂Bφ/∂t. Here we do not calculate a final steady
state Bφ but just show terms that contribute to ∂Bφ/∂t =
–∇× E  ≠ 0 in a steadily rotating stationary FRC equilib-
rium that starts with only Bp. The electric field is calcu-
lated from the electron momentum or Ohm’s law, giving

∂ ∂φ φ φB t p ene e= − ∇ × = ∇ × ∇ − ×⋅ ⋅( ) ( )[ ]ˆ ˆe E e J B .(2)

Subscripts e and i identify electron and ion, respectively, n
= ne = Zni, Je = –enve, pe = neTe and ê is a unit vector.
Thermal force terms are not analyzed in this paper.

p ~ ψ2
30 MA
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p ~ ψ2
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0.2
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0.2

Fig. 5.  Computed FRC equilibria in a long cylindrical
flux conserver, for p ~ ψ2 and two values of Iplas.

Coordinate systems are cylindrical (R,φ,z) or flux surface
based (xn,xp,φ), where ên = outward normal to the
magnetic surface and êp = poloidally tangent to it.
Poloidal flux ψ is an alternate normal coordinate, with
ψ(R=0) = 0. For right handed coordinate systems, dψ =
–RBp dxn, ∇ψ  = –RBp ên and ψ is positive in the CT if
Bp is positive. Te and Ti are nearly constant on a closed
magnetic surface and so are functions of ψ only. Density
and pressures are functions of (ψ,R) or equivalently of
(ψ,xp). Neither pe nor pi are constant on a magnetic
surface in rotating plasmas.

The first right side term of Eq. (2), the “density
gradient” term, becomes

∂

∂ ψ
φ

φ
B

t n

T ln n

e

dT

ed
R ln ne e

p
∇

=
∇ × ∇

⋅ = − ⋅ ∇ê B   . (3)

The second or “Hall” term becomes

∂
∂

ψφ
φ

B

t
R

Hall
e p e= ∇ × ∇( ) ⋅ = ⋅ ∇Ω Ωê B    , (4)

where Ωe = ve/R is the electron toroidal angular rotation
frequency. Eq. (3) is nonzero only if the density and
temperature gradients are not aligned. This is possible if
n(ψ,R) acquires a centrifugal radial gradient from rotation.
In Eq. (4), Ωe(ψ,R) acquires shear in the magnetic surface
from the increased equilibrium Jφ driven at large R by the
outward centrifugal pressure. Since the electrons are tied
to the magnetic lines, sheared Ωe stretches poloidal
magnetic lines into the toroidal direction.6

Figure 6 illustrates the vectors contributing to the
density gradient and Hall terms. Both mechanisms operate
maximally at the axial extremes of the magnetic surfaces,
and both generate ∂Bφ/∂t of opposite signs at opposite
ends. The sign of ∇Ω e corresponds to a steadily rotating
axisymnetric equilibrium obtained by Hinton and
Wong.20 In this equilibrium, the two mechanisms oppose
and cancel each other, because of ∇× E = 0 is imposed.

It is straightforward to calculate the density gradient
effect, Eq. (3). In a rotating equilibrium with isothermal
magnetic surfaces, the density and its gradient are20
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Fig. 6.  Vectors from eqs. (3) and (4) contributing to the
density gradient (a) and the Hall (b) Bφ generation .

n R N m R R ZTi i refψ ψ, exp( ) ≈ ( ) −( )[ ]Ω2 2 2 2  and (5)

∇ ( ) ≈ ( )∇ + ( )ln , / ˆn R n m R ZTi i Rψ ∂ ∂ψ ψ Ω2 e    . (6)

The ∇ψ  term does not contribute to Eq. (3), leaving

∂
∂ ψ

φB

t

m R

eZT

dT

d
e

n

i i e
p R

∇
= − ⋅( )Ω2 2

B ˆ    . (7)

The rate of Bφ growth depends mainly on Ω i
2 , since

(R∇ Te)/T ~ 1. For Ωi ~ 105 s–1 in typical FRCs and
mi/eZ ~ 10-8 kg/C, this yields ∂Bφ/∂t ~ 100 T/s, or
0.1 T/ms. This is somewhat less than the rate of typical
FRC Bp decay. It is instructive to normalize ∂Bφ/∂t by
Bp/τref, where τref is some characteristic time. Define γ =
(∂Bφ/∂t)/Bp. If τref = 1/Ωi, then

γ ρΩi th ci Te eM L T T= ( )( )    , (8)

where Mth = viφ/vith, vith = ion thermal velocity, ρci = ion
gyro radius and LTe = Te/|∇ Te|. While both ρci and LTe
should be evaluated at the axial extremes of the magnetic
surface, the ratio ρci/LTe ~ 1/s is insensitive to where it is
evaluated. Eq. (8) shows that it takes more plasma
revolutions to build Bφ to ~ Bp as s increases. If instead
we choose τ ref = τA = LA/vA, where vA = Alfvén speed
and LA = the length used to define the Alfvén time, then

γ τ ωA A pi A Te eM c R L L T T= ( )( )( )( )2    , (9)

where

M R v m n R BA i A i i i p o rot
2 2 2 2 2= ( ) = ( ) =Ω Ω µ β (10)

and c Rpiω( )  = 1/S* ≈ 0.1/s. The Alfvén time is the
time scale for the growth of MHD instabilities like the tilt
mode. Therefore, unless the FRC is rotating at near
Alfvénic speed and has low s, it will be necessary to

supply an initial Bφ, if Bφ is necessary for MHD stability.
An oblate FRC surrounded by a nearby stabilizing
conducting wall might avoid this requirement, however.

It is difficult to predict how the poloidal shear of J
divides between Ωe and Ω i in the general case and,
therefore, how it might contribute to toroidal B generation.
However, as an example, if Ωi were to not vary within a
magnetic surface, then all the poloidal shear of J would
necessarily appear in Ωe. Then

∂
∂ ψ

φB

t

m R

eZ

d R

d
Hall

i i i
p R= −

( )
⋅( )Ω Ω2 2 2

0
2ln T

B e (11)

where R0 is any fixed characteristic radius. The sign of
this contribution would depend on the shear from surface
to surface of ln Ωi R T2

0
2( ), which is proportional to

ln (Mth). Alternatively, the Ωe shear could be imposed by
an external current drive means.

OBLATE FRC D-3He FUSION REACTOR

A spherical geometry was chosen for reasons stated in
the Introduction. A conceptual design, developed to
illustrate the scale of a steady-state D-3He FRC reactor is
summarized here. Figure 7 is a sketch of a conceptual
steady state, oblate FRC fusion reactor. The FRC plasma
is confined by poloidal magnetic field produced by
circular superconducting coils. A 0.9 m-thick shield limits
coil heating by neutrons emitted by minority DD and DT
fusion in the plasma. Current drive must be provided at
the magnetic axis by means as yet untested at relevant
conditions. Bremsstrahlung radiation power is absorbed in
the first wall and can be converted by a thermal cycle.
Synchrotron power, though low for an advanced fuel
magnetically confined plasma, must still be highly
reflected and absorbed in the plasma to ignite. Plasma
diffusing into the scrape-off layer (SOL) carries the
majority of the fusion power. In principle it can converted
to electricity by a direct converter. The fusion power of
this design is 2 GW, chosen arbitrarily. The Table lists
some major parameters.

FRC

Plasma

Magnet Coils

Direct
Convertor

Shield

Direct
Convertor

Fig. 7.  Oblate FRC steady-state fusion reactor.
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Table 1: FRC Fusion Reactor and Plasma Parameters

Fuel (specified) 50 D, 50 3He

Central temperature (specified) 100 keV

Fusion power (specified) 2 GW

First wall thermal power (specified) 10 MW/m2

Plasma average radius 1.74 m

Plasma volume 22 m3

Plasma internal energy 1.1 GJ

Central plasma pressure 69 MPa

Average magnetic field at coil 9.4 T

Central ion density, D + 3He 17⋅1020 m-3

Central electron density 26⋅1020 m-3

Plasma current 32 MA

Required energy confinement time 0.7 s

Number of contained ion gyroradii ~75

The required energy confinement time given in
Table 1 is the minimum value consistent with having
1.1 GJ of plasma internal energy, 2 GW of fusion power
and 0.46 GW of radiated power. A τE of ~0.7 s in a
plasma of this size is on a par with advanced tokamak
confinement. At present it is not known if FRC
confinement can be this high. Therefore, research into the
inherent limits of FRC confinement is crucial to the
viability of the steady-state oblate D-3He FRC reactor.

CONCLUSION

The high β of field reversed configurations (FRCs)
and their unlinked magnet topology might make possible a
steady-state D-3He fusion power core. However, excellent
plasma stability and confinement are required. Theory
suggests that short FRCs, such as wall stabilized oblate
FRCs or doublet-FRCs, might offer improved stability.
Interchange and ballooning modes in FRCs and dipole
fields21 share many features and can be profitably studied
together. Rotating FRCs might generate steady-state
toroidal magnetic fluxes. Continued and expanded FRC
experiments and theory are urgently needed to provide a
firm physics basis for this and other FRC concepts.
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