Electric Potential Cells at the Diverted Tokamak Separatrix*

M.J. Schaffer,¹ J.A. Boedo,² B.D. Bray,¹ R.J. Colchin³, C.-L. Hsieh,¹ R.A. Moyer,²

G.D. Porter,⁴ T.D. Rognlien,⁴ and J.G. Watkins⁵

¹General Atomics, San Diego, California, USA
²University of California, San Diego, California, USA
³Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
⁴Lawrence Livermore National Laboratory, Livermore, California, USA
⁵Sandia National Laboratories, Albuquerque, New Mexico, USA

email: schaffer@fusion.gat.com

Detailed measurements by probes and Thomson scattering reveal unexpected electric potential and electron pressure (p_e) hills near the divertor X-point in DIII-D tokamak L-mode plasmas. The potential hill drives $\mathbf{E} \times \mathbf{B}_T$ circulation of plasma about the X-point, thereby exchanging particles, energy and momentum across the separatrix (\mathbf{B}_T is toroidal magnetic field). The corresponding cross-separatrix transport can be large. This "potential cell" appears to be absent in ELMing and ELM-free H-mode plasmas, indicating the absence of strong X-point circulation. The measured private region convection quantitatively confirms the prediction by the UEDGE numerical code with plasma drifts included. This private $\mathbf{E} \times \mathbf{B}_T$ flow is the main cause of the well-known B_T direction sensitivity of divertor plasmas. New UEDGE modeling shows evidence of additional drift-driven pressure and potential variation poloidally around the separatrix. Potential cells in UEDGE appear to be a consequence of ion $\nabla \mathbf{B}$ drift and parallel (to \mathbf{B}) viscous stress, which cause poloidal density gradients to build-up and corresponding potential gradients to arise. We speculate that separatrix potential cells might be a major mechanism of L-mode edge transport and their suppression an important feature of H-mode.

^{*}Work supported by U.S. Department of Energy under Contracts DE-AC03ER9954463, W-7405-ENG-48, and Grant No. DE-FG03-95ER54294.