TF COIL STRUCTURAL MODEL

- FEA model of one bundle of the TF coil consists of beam and spring elements
- Stiffness of center-post is equal to 1/24 that of the composite cylinder
- Calculated stiffness of spring elements were adjusted to agree with deflection measurements taken during initial start-up tests

- Calibration and test shots are used to load test new components on DIII–D
- Some calibration test shots produce lateral load distributions different from maximum design loads. The peak lateral loads can be nearer the coil mid-plane
- Lateral displacements are measured on all 24 outer bundles for every shot

STRUCTURAL ANALYSIS RESULTS FOR SHOT 111031

- Structural analyses were performed for (1) no slip between outer turns (2) slip between top and bottom 32 inches of the outer turns
- Maximum lateral deflection of the outer turns with no slip is 0.16 in. (0.42 cm)
- The integrated shear flow exceeds the friction limit, indicating that slip would have occurred if not for the epoxy filled studs

STRUCTURAL ANALYSIS RESULTS FOR SLIP OCCURRING BETWEEN TURNS

- Maximum lateral deflection of outer section with slip between turns is 0.35 in. (0.89 cm)
- This deflection exceeds the deflection limit of 0.25 in. (0.63 cm)
- Angel of twist of the coil center-post is significantly increased by the reduced stiffness of the outer sections

SHEAR STRENGTH OF EPOXY FILLED BOLTS

- If friction forces between turns are exceeded, epoxy filled studs react shear loads
- Tests on epoxy filled insulted studs in double shear were performed
- Results show slight damage of insulating sleeve after loaded to 10⁵ lb. (4.45 x 10⁵ N) in double shear

- The total lateral load on an outer bundle between mid-plane and the anti-torque wedges could be calculated in advance by the EFIT code
- Results from EFIT could be input to the plasma control system
- Shots exceed the integrated load limits of 107,500 lb.
 (4.78 x 10⁵ N) could then be limited by lower coil currents

- High strength (MP 159) preloaded insulated bolts are used to clamp ends of outer turns
- Special washers are used in inject epoxy between insulating sleeve and bolt hole
- Epoxy impregnated gap provides additional safety factor on shear transfer between outer turns if friction forces are exceeded

- Test calibration shots can produce peak lateral loads shifted toward the mid-plane of the TF coil
- Design lateral loads for 5 MA plasmas are positioned near the anti-torque wedges
- Preloaded insulated bolts were effective in prevent slip between turns of the TF coil for shot 111031
- Lateral deflections of the TF coil should be closely monitored for test shots similar to shot 111031

- Lateral loads act on TF coil due to poloidal fields crossing the coil current
- TF coil center-post and the anti-torque frame react lateral forces to minimize lateral deflections
- Anti-torque structural system reduces fatigue stresses in the coil finger-joint

- Recent calibration shots produced increased lateral loads on outer sections of the TF coil
- Calibration shots without plasma produce lateral distributions different from design loads
- The increased lateral deflections resulted in contact with adjacent equipment
- Structural analysis was performed to determine if slip between turns of outer sections was cause of large deflections

LATERAL LOAD DISTRIBUTION ON TF COIL FOR SHOT 111031

BONDED SECTIONS OF THE TF COIL

DEFORMED SHAPE FOR SHOT 111031 FOR NO SLIP BETWEEN

LATERAL LOAD DISTRIBUTION ON TF COIL FOR SHOT 111031

STRUCTURAL MODEL OF TF COIL

DIII-D ANTI-TORQUE STRUCTURAL ELEMENTS

133-03/rs

INSULATED SHEAR BOLT CLAMPING HARDWARE

