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ABSTRACT

The DIII–D research program is aimed at developing the scientific basis for advanced

modes of operation which can enhance the commercial attractiveness of the tokamak as

an energy producing system.  Features that improve the attractiveness of the tokamak as a

fusion power plant include: high power density (which demands high β), high ignition

margin (high energy confinement time), and steady state operation with low recirculating

power (high bootstrap fraction), as well as adequate divertor heat removal, particle and

impurity control.  This set of requirements emphasizes that the approach to improved

performance must be an integrated approach, optimizing the plasma from the core,

through the plasma edge and into the divertor.  We have produced high performance

ELMing H–mode plasmas with βN H98y ~ 6 for 5 τE (~1 s) and demonstrated that core

transport barriers can be sustained for the length of the 5-s neutral beam pulse in L–mode

plasmas.  We have demonstrated off-axis electron cyclotron current drive for the first

time in a tokamak, discovering an efficiency above theoretical expectations.  Edge

stability studies have shown that the H–mode edge pressure gradient is not limited by

ballooning modes; the self-consistent bootstrap provides second stable regime access.

Divertor experiments have provided a new understanding of convection and recom-

bination in radiative divertors and have produced enhanced divertor radiation with scrape

off layer plasma flows and impurity enrichment.
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1.  INTRODUCTION

The DIII–D research program is aimed at developing the scientific basis for advanced

modes of operation which can enhance the commercial attractiveness of  the tokamak as an

energy producing system.  Features that improve the attractiveness of the tokamak as a fusion

power plant include: high power density (which demands high β = 2 µo<P>/B2), high ignition

margin (high energy confinement time τE), and steady state operation with low recirculating

power (high bootstrap fraction), as well as adequate divertor heat removal, particle and impurity

control.  This set of requirements emphasizes that the approach to improved performance must be

an integrated approach, optimizing the plasma from the core, through the plasma edge and into

the divertor.  Research results from DIII–D reported here include results from all these areas.

In the area of core physics research, we have demonstrated improved plasma  performance

and increased duration of the high performance phase in both H–mode and L–mode plasmas.

Moving towards an eventual goal of fully non-inductive current drive, we have made the first

tokamak demonstration of off-axis electron cyclotron current drive.  It exhibits higher off-axis

efficiency than previously expected theoretically.  In edge physics research, we have established

the role of the self-consistently generated edge bootstrap current in stabilizing ballooning modes

and allowing edge second regime access.  Edge pressure gradients more than a factor of two

above the ballooning limit without bootstrap current have been experimentally measured.  This

has improved our understanding of the edge pedestal and ELMs, which affect both core and

divertor performance.  In addition, a physics model of the density limit has been tested on DIII–D

which reproduces density limit results on present machines and scales favorably to larger devices.

In the area of heat and particle control in the divertor, we have established a new understanding of

convection and recombination in radiative divertor plasmas.  Finally, we have enhanced the

divertor radiation by plasma flows and impurity enrichment.
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2. PROGRESS TOWARDS INTEGRATED, STEADY-STATE,
IMPROVED PERFORMANCE PLASMAS

In order to establish their future relevance for fusion, improved performance  scenarios

must demonstrate a path towards ultimate steady-state operation.  This requires demonstrating

that improved confinement plasmas can be sustained for long pulses at high beta values as well as

developing the tools (e.g. current drive) which will be needed for steady state operation.  DIII–D

has carried out experiments in both these areas since the last IAEA.

Figure 1 demonstrates our recent progress in moving towards steady state improved per-

formance discharges.  In this figure, we measure our approach to steady state with τduration/τE, the

duration of the high confinement phase divided by the energy confinement time.  We measure

advanced tokamak performance through the product of normalized beta, βN = β (aBT/Ip), and the

confinement enhancement factor H relative to the ITER confinement scaling law.  For H–mode,

we will use H98y, which is defined relative to the most recent scaling for thermal energy con-

finement time in ELMing H–mode [1].  As can be seen in Fig. 1, significant progress has been

made in DIII–D in the past two years in advancing both quantities. The points describing recent

shots are above and to the right of our earlier results, which is the direction of our advanced

tokamak goal.

An example of such an improved performance discharge is shown in Fig. 2 [2].  Lines

indicating the βN and H98y values required for ITER and the ARIES-RS reactor study are also

shown, indicating that this discharge exceeds the ARIES-RS requirements on the βN H98y

product.  A βN H98y product exceeding 6 is sustained for 1 s (5 τE).  The high performance phase

of the shot in Fig. 2 was terminated at about 3 s by the initiation of a neoclassical tearing mode,

probably triggered by an ELM.
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FIG. 1. Plot of the βN H product versus normal-
ized discharge duration for DIII–D shots from
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and more recent shots (squares). The shaded
region shows our progress. All these discharges
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FIG.  2. Time evolution of a high performance
DIII–D discharge. The 1 s duration is
comparable to the current profile relaxation time
scale. Some parameters of interest during the
high performance phase are:  β ~ 4.5%, ne/nGr ~
0.5, q(0) ~ 1,q95 = 4.4, τth ~ .21 s, and fbs ~ 50%,
where nGr is the Greenwald density and fbs is the
bootstrap fraction.

Two approaches have been taken to improve plasma performance and duration as is illus-

trated in Fig. 3.  Both utilize the technique of an early neutral beam injection during the current

ramp that was developed over the past several years in producing core transport barriers in DIII–

D [3,4], JET [5], JT60-U [6],and TFTR [7,8].  However, one approach [2] is more aggressive in

pushing high power to reach high βN while the second has emphasized more the long pulse

aspects.  Neither shot shows the rapid, localized change in temperature gradient characteristic of a

strong, localized core transport barrier; however, transport analysis indicates improvement in ion

thermal diffusivity over most of the discharge relative to standard ELMing H–mode [2].

Core ion transport barriers have been run for even longer durations in low current, L–mode

edge discharges, as is shown in Fig. 4.  These shots were specifically optimized for the full

5 second neutral beam duration by running at low current and a relatively low density of

2×1019 m–3.  This discharge is an existence proof that it is possible to create an ion transport

barrier which can last indefinitely.
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A key feature in sustaining the good performance in the discharges in Figs. 3 and 4 is the

absence of sawteeth.  Detailed analysis of the current diffusion in these shots shows that this

result is somewhat surprising, since neutral beam current drive alone should be enough to drive

q(0) well below one.  However, fast-particle driven MHD modes apparently broaden the neutral

beam current drive profile, preventing this drop in q(0).  In the discharges in Fig. 3, we observe

fishbone oscillations while in the shot in Fig. 4, there are Alfvén eigenmodes present.  Both of

these modes are driven by fast particles and can redistribute these particles outward in radius.

Two major hurdles must be overcome in order to extend the discharges shown in Fig. 3 to

higher performance and longer duration.  First, as is shown in Fig. 3 (a), the performance in shot

95983 is degraded after 2.7 seconds by the onset of neoclassical tearing modes.  This problem

with neoclassical tearing modes is a

common feature of many high

performance discharges [2].  These

modes are  metastable, requiring a

finite-size magnetic island to trigger

instability.  Finite-sized, seed islands

can be triggered transiently, for

example, by other MHD instabilities in

the plasma, (e.g. sawteeth, ELMs or

fishbones). As is shown in Fig. 5, the

absence of sawteeth in shots like those

in Fig. 3 removes one of the possible

sources of seed islands for the

neoclassical tearing mode and thus

allows operation at a higher beta value.
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FIG. 5. The measured beta value for discharges similar to
those in Fig. 2 (squares) significantly exceeds the neo-
classical tearing mode limit established for sawtoothing
discharges. The horizontal axis is the scaling value estab-
lished in Ref. [9] while the line through the circular points
is the best fit to the data for sawtoothing discharges.
These neoclassical tearing modes are a mix of m/n = 3/2
and 2/1 cases.
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The second hurdle is overcoming the effects of current diffusion so that q(0) remains above

one, preventing destruction of the core transport barriers by sawteeth and removing this trigger of

neoclassical tearing modes. Although sawteeth were not present in the shots in Figs. 3 and 4, the

MHD oscillations which we believe broadened the beam driven current are undesirable from a

performance standpoint.  The measured fusion neutron rate in the shot in Fig. 4, for example, was

about 1/3 of the value predicted assuming all the fast ions deposited near the axis slowed down

where they were born. As is discussed presently, the electron cyclotron heating (ECH) systems

now coming on line on DIII–D should allow us to confront both these hurdles through electron

cyclotron current drive to both broaden the current profile and shrink the seed island.

Because of the need for current profile control for advanced tokamak operation,

investigation of electron cyclotron current drive (ECCD) is a key portion of the DIII–D research.

In the past year, we have demonstrated off-axis ECCD on DIII–D for the first time in any

tokamak [10]. Electron cyclotron wave power at 110 GHz, which is resonant near the second

harmonic of the electron cyclotron resonance, can be steered over a range of minor radii by tilting

the launching mirror in the poloidal direction. The waves are given a toroidal velocity component

so they interact with electrons traveling in a preferred toroidal direction, generating toroidal

current. Analysis was carried out using motional Stark effect measurements of the internal

magnetic field, allowing the local driven current density to be determined [11]. A 4-point vertical

scan of the deposition location was made, covering the range of 0.1 to 0.5 in normalized minor

radius ρ. Figure 6(a) shows the profile of ECCD which is driven at a ρ = 0.5 by 1 MW of electron

cyclotron power. The integrated net current driven is 35 kA. The gross behavior of the plasma--

the evolution of the internal inductance, the time duration before the entry of the q=1 surface into

the plasma as signified by the start of sawteeth — is consistent with the effects expected from the

measured current drive for the different locations of the power deposition. The magnitude of the

driven current exceeds the value calculated by linear (TORAY) or quasi-linear (CQL3D) codes.

As is shown in Fig. 6(b), the theoretically predicted fall off in normalized efficiency with minor
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radius is not observed; the normalized efficiency at ρ = 0.1 and ρ = 0.5 are about the same. This

result suggests that trapping of the heated electrons is much weaker than theoretically expected

under the experimental conditions. These results strongly support the use of higher power ECCD

as a means of sustaining current profiles with the optimized magnetic shear needed for advanced

tokamak plasmas.
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FIG. 6. (a) Profile of current density driven by ECCD for a case with power
deposition at about half of the minor radius. (b) Normalized efficiency for
ECCD as a function of the minor radius coordinate ρ. The current drive
efficiency η has been normalized by the local electron temperature to remove
the theoretically expected temperature dependence. The experimental results
are compared to the linear TORAY calculations and show little decrease in
normalized efficiency with ρ, contrary to theoretical expectations.
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3. PROGRESS IN UNDERSTANDING
AND CONTROLLING CORE TRANSPORT

In order to extend the improved performance results from present machines to future

devices with confidence, we must finally develop a predictive understanding of tokamak

transport.  In addition, improved performance scenarios, especially in self-heated burning

plasmas, will require development of new tools to control transport.  Over the past two years, we

have made progress in both understanding and control.

Over the past several years, fusion theorists have developed several new models of plasma

transport [12-15].  Averaged over a large database of shots, each of these models do about equally

well in predicting quasi-steady-state, equilibrium plasma profiles even though each model has a

different mix of fundamental physics. Accordingly, to distinguish between models, some other

test is needed.

Simulations have shown that perturbative transport experiments can provide a more critical

test of transport models than equilibrium transport analysis.  A perturbation source that deposits

heat locally into the plasma particle species under study is preferred.  Experiments have been

performed on DIII–D using modulated ECH as the spatially localized perturbative heat source

with the resonance absorption layer off axis.  The electron and ion temperature responses are

measured and the amplitude and phase of the perturbations (Fig. 7) and the equilibrium

temperature profiles are compared to predictions from several transport models [16].

The results with off-axis heating indicate the electron and ion responses to the ECH

perturbation are out of phase with each other at the plasma core and at the resonance layer.  In

general, the IFS-PPPL [12] and GLF23 [13] models predict reasonably well the ion response

while the GLF23 and IIF [14] models do a reasonable job with the electron response.  The GLF23
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model includes the effects of both elec-

tron temperature gradient (ETG) and

ion temperature gradient (ITG) driven

turbulence as well as trapped particle

modes, which may be why it fits the

best overall.  The GLF23 model fits the

data best for the case with the ECH

localized at ρ = 0.3; the comparisons

for other heating locations were some-

what worse [16]. None of the models

showed good agreement with both the

ion and electron perturbative responses

and the equilibrium profiles although

the equilibrium profile fit of the GLF23

model was improved by including the
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lines) and IIF model (dashed gray lines).  The ECH
resonance location is at about ρ  = 0.3.

effects of the measured, average E×B shear [16].

Although the creation of ion thermal and angular momentum transport barriers has

been connected with E×B shear stabilization of turbulence both theoretically and experimentally

[17–19], the physics governing the electron channel is much less well understood.  Electron

thermal transport barriers are much more difficult to form in DIII–D than ion barriers and seem to

require much greater magnetic shear [20]. Electron heating with either ECH or fast waves has

been used to probe the physics of core transport barriers [21,22]. For reasons that are not

completely clear, central electron heating during the end of the core ion barrier formation phase

tends to weaken the ion barrier, resulting in some reduction in core ion temperature and core ion

rotation. This effect occurs only within the core barrier region with the ion profiles outside this

region remaining unchanged by the additional electron heating. Both ion and electron thermal
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diffusivities increase after the application of the electron heating, with the electron diffusivity

rising almost an order of magnitude [21]. The changes in the ion channel in these discharges are

consistent with change in the E×B shearing rate relative to the low k turbulence growth rates [21].

The decreased ion rotation gives a decreased E×B shear while the growth rate changes little.

However, the physics of the electron channel in these plasmas remains unexplained [21]. New

FIR scattering measurements of short wavelength turbulence at k = 12 cm–1 have shown

measurable turbulence whose onset is correlated with the start of the electron heating, which

suggests high k turbulence may be affecting electron transport. Detailed stability calculations,

however,  have not yet identified an associated unstable mode [21].

A connection between confinement improvement and observed and calculated turbulence

reduction has also been established in discharges run with neon or argon injection to reproduce

the TEXTOR RI-mode plasmas [23,24].  As is shown in Fig. 8, injection of neon results in

dramatic reduction in density fluctuations observed by beam emission spectroscopy around ρ =

0.8.  As the fluctuations gradually decrease, confinement improves.  Furthermore, calculations of

gyrokinetic stability similar to those done in [18,25] demonstrate that adding neon to the plasma

reduces the linear growth rate at all wavenumbers, consistent with the observed confinement

improvement.  As indicated in Fig. 8, the turbulence at smaller wavenumbers should already be

stabilized by E×B shear effects.  Similar effects have been seen with argon injection.  In these

shots, transport analysis demonstrates an improvement in both electron and ion thermal transport

which correlates with the reduction in observed density fluctuations.  An important feature of

these discharges, relevant to the edge stability issues discussed in the next section, is the reduction

in edge pressure gradient and edge bootstrap current in H–mode plasmas with neon or argon

impurity injection.  In spite of the edge pressure pedestal reduction, energy confinement remains

the same or improves in these plasmas.
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4. EDGE PLASMA CONFINEMENT AND STABILITY

Another factor in obtaining steady-state improved performance discharges is control of

edge transport and stability.  The confinement physics and MHD stability of the H–mode edge

pedestal affect both core plasma and divertor performance.  The pedestal height influences overall

plasma confinement, as is shown in Fig. 9.  In addition, edge stability affects ELM frequency and

amplitude, which have a major impact both on core transport barriers and on the divertor.

Furthermore, impurity radiation in this edge region is a possible cause of the density limit.

Finally, the interaction of the core plasma with the wall can have a major effect on the global

MHD beta limits. Accordingly, understanding and controlling the physics of this edge region is

akey issue for any future plasma which employs H–mode.  In the past two years, DIII–D has

demonstrated a strong connection between the pedestal height and core confinement and has

demonstrated that the edge pressure gradients are not limited by the ballooning instability.  In

addition, we have shown that a model based on edge impurity radiation leads to a density limit

very similar to the Greenwald prediction in present devices which scales much more favorably

with machine size than previously anticipated. Finally, investigation of the physics of resistive

wall modes has achieved β values up to 1.4 times the limit with no wall stabilization, has

extended the duration of the wall stabilized period by a factor of three, and has produced a

successful first attempt at active stabilization of the mode.

Both theoretical expectations [26,27] and the DIII–D results shown in Fig. 9 [28] indicate a

connection between the edge pressure pedestal height and the overall energy confinement.  This

connection is much deeper than the trivial one provided by the edge setting the boundary

condition for the plasma core, since a boundary condition effect with no other influence would

simply produce a linear relationship between the pedestal pressure and the total stored energy

which is not seen experimentally.  In the absence of any other constraint, one would naturally
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want to optimize plasma performance by

pushing the edge pedestal pressure to its

maximum possible value to improve the

energy confinement.  Unfortunately, the

pedestal pressure is limited by the onset of

ELMs.  In addition, optimizing plasma

shape for the highest possible pressure

pedestal usually results in large energy loss

per ELM.  As has been discussed in the

ITER context [29], such large energy loss

would be difficult to design for in a large

device.  Accordingly, control of the edge is

needed to obtain the best possible core

performance while not adversely affecting

the divertor.
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Because the ELM physics influences both core confinement and divertor performance, we

have undertaken a systematic study of edge plasma stability.  Although there has been

considerable speculation that the edge pressure  gradient just before an ELM is limited by high-n

ballooning, detailed measurements on DIII–D have shown that the pressure gradient exceeds this

limit by at least a factor of two [28]. As is shown in Fig. 10, we have determined that including

the self-consistent edge bootstrap current in the ballooning stability calculation makes a major

difference in the stability conclusions [30].  The bootstrap current, driven by the large edge

pressure gradient, opens up a ballooning second stable region at the plasma edge.  Accordingly,

the edge pressure is not limited by high-n ballooning but rather by other, lower n MHD modes

which are probably driven unstable by the large pressure and current gradients that ballooning

stability allows [31].
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The highest performance DIII–D

VH–mode and negative central shear H–

mode discharges are  limited by MHD

stability at the edge of the plasma; the

peak performance is usually terminated in

these discharges by low to medium n

ideal instabilities at the edge having the

characteristics of a large ELM but which

normally result in a loss of the transport

barrier [32,33].  Recent analysis has

demonstrated that the interaction of low n

ideal kink and high n ballooning stability

plays a crucial role in the attainment and

sustainment of high performance.  High n

ideal ballooning second stability access

permits the buildup of the edge pressure
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FIG. 10. Plot of the measured pressure gradient and
inferred edge current density for a DIII–D discharge
similar to those in Fig. 9: plasma current 1.5 MA,
toroidal field 1.9 T, q95 = 3.4, inverse aspect ratio 0.36,
vertical elongation 1.76, and average triangularity 0.28.
The edge current density has been  inferred from equi-
librium reconstruction including MSE measurements
and is compared with a transport calculation including a
collisional bootstrap current model.  The pressure gra-
dients that would be unstable to high-n ballooning
mode are shown.  Note that the edge pressure gradient
is not limited by ballooning modes and the experi-
mental value greatly exceeds the ballooning limit that
would be calculated by ignoring the bootstrap current,
which is shown by the dashed line.

gradient.  This allows high peak performance but ultimately results in destabilization of the more

dangerous low n global edge instabilities which are manifested as the large ELMs that terminate

the high performance.  Conversely, closing the second stable access at the edge generally limits

the pressure gradient and bootstrap current to values well below the low and intermediate n kink

limits.  This results in lower peak performance with smaller amplitude ELMs which also allow

longer discharge duration.

A clear route to long-pulse high-performance operation is, therefore, to control the edge

conditions to eliminate second stable access, and to raise the first regime ballooning limit just

below the low and intermediate n kink limits. One method for achieving this is through the cross

section shape, which can be systematically varied using the DIII–D control system.  Calculations
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have shown that the equilibrium squareness is a useful tool for controlling the edge ballooning

stability through its effect on the field line connection length [31,34].  (As its name suggests, high

positive squareness discharges have almost square shapes.)  Large positive squareness, or low, or

negative squareness, can restrict second stability access.  This has been exploited in recent

experiments in DIII–D [35] in which the ELM frequency is increased and the amplitude reduced

at large squareness [31].  Motivated by these results, recent calculations show that higher order

local perturbations of the outboard shape, which greatly increase the field line connection

length there, can also eliminate second

stability access near the plasma edge,

with little effect on the favorable low n

kink stability properties of D-shaped

plasmas [31].  This will be pursued in

future experiments.

A second avenue for achieving

control of the edge ballooning stability is

to increase the edge  collisionality to

reduce the edge bootstrap current; lower

edge  current density hinders second sta-

bility access.  Higher edge collisionality

is  achieved in DIII–D experiments by

increasing the edge radiation by puffing

deuterium and argon.  In these experi-

ments, the ELM frequency is typically

reduced by roughly half and often the

ELM magnitude is reduced as well.

Figure 11 shows the time history of
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discharge 95011, in which argon was injected at 2 seconds.  In this case, the ELM frequency was

reduced by a factor greater than 2 with a small reduction in the ELM amplitude.  The confinement

is slightly improved by the change in ELM behavior.  Figure 11(c) shows the calculated bootstrap

current before and after the gas puff.  The edge bootstrap current has been reduced and the peak is

moved inward.  This is reflected in the calculated ballooning stability in Fig. 11(b); the reduced

edge bootstrap current has closed off the second stability access in this discharge.

A tokamak density limit scaling of the form ne ∝  Ip/a2 has been reported by several authors

[36,37] where Ip is the plasma current and a is the minor radius. However, extrapolation of this

scaling to reactors can be misleading because the underlying physical processes have not been

determined.  We have conducted a series of experiments on DIII–D to determine the density-

limiting processes in tokamaks [38,39]. Using the understanding gained through these

experiments, we have succeeded in obtaining high confinement plasmas at densities well beyond

the limit of the Hugill-Greenwald scaling [39,40]. A key result of these studies is that the n=0,

m=1 MARFE condensation instability criterion [41] is in quantitative agreement with high

resolution edge measurements on DIII–D [42]. Additionally, we have shown that the MARFE

instability condition combined with ITER89P confinement scaling yields an edge density limit

scaling of the form:

n
I

a
P R Be

crit p
0.96

1.9 heat
0.43 0.17

T
0.04∝ +[ ]− −

ξ κ κ0 11 2 2 0 22
1. .

( )    ,

where ξ i is the impurity concentration and κ  is the plasma elongation. Except for a moderate

power dependence this scaling is remarkably similar to the Hugill-Greenwald scaling. The

insensitivity to all plasma parameters except Ip and minor radius a derives from the fact that the

MARFE density threshold for low Z impurities (e.g. oxygen or carbon) for an electron

temperature range of 10–100 eV increases with the fourth power of Te. Accordingly, a MARFE

nearly always occurs at the same boundary temperature (~20 eV). Therefore, the trade off

between density and temperature in the stored energy determines the density scaling. Thus, we
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conclude that future devices with high edge temperatures can access densities well above the

nominal Hugill-Greenwald limit.

Turning now to the physics of wall stabilization, we have developed a double current ramp

technique to reliably and reproducibly make plasmas where the βN values achieved indicate that

wall stabilization of MHD modes is important [43]. In addition, improved diagnostics have

allowed us to make a direct identification of the resistive wall mode (RWM) mode structure in the

plasma interior using ECE spectroscopy. Using these shots, we have achieved a new physics

understanding of wall stabilization.  We have produced rotating, wall stabilized discharges with

the ratio of βN to the no wall βN limit Ew up to Ew = 1.4±0.05. For example, in shot 92544, Ew

exceeds unity for 200 ms,which is >30 τW. The time constant τW is the n =1 time constant of the

wall (about 5.8 ms in this shot) and is a measure of the penetration time of the potentially unstable

mode through the resistive vessel wall.  Similar results with Ew well above unity have been

obtained in a number of discharges run under similar conditions.

In all wall stabilized discharges, the plasma toroidal rotation is observed to slow down,

which ultimately leads to destabilization of the resistive wall mode (RWM) when the plasma

angular rotation speed Ωplasma falls below some critical frequency Ωc.  The critical rotation speed

Ωc is robustly reproducible from shot to shot but is strongly dependent on plasma conditions,

notably βN. Investigation of the reasons for this decrease in Ωplasma have determined a clear

correlation between its onset and βN exceeding βN
no wall .  However, there is no correlation of the

slowing with fast particle driven MHD modes (TAE modes) or low n MHD activity during the

slowing down period [44].

Active means of avoiding the RWM are being pursued by controlling either the plasma

rotation or the RWM directly.   As is shown in Fig. 12, preliminary results from open loop RWM

control experiments have demonstrated that the RWM is suppressed by the application of an

appropriate correction field using an external coil set located far outside the plasma.  A series of
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discharges with reproducible RWM on-

set were run, but one discharge used an

n = 1 (C-coil) perturbation which was

proactively programmed to turn on at

the time of the RWM onset with a phase

opposing the mode (Fig. 12).  As ob-

served from plasma rotation and Te

profiles near q = 3, the RWM started to

grow but was suppressed and the plasma

recovered when the opposing field was

applied.  The n=1 radial field soaking

through the vacuum vessel wall was

measured by a saddle loop array.  As is

shown in Fig. 12, this field grows with-

out bound in the reference shot without

the external n=1 field but remains at a

low level with the external field applied,

indicating that control was achieved.

New experiments in DIII–D with new

active feedback power supplies are

planned next year to pursue this further.
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5. DIVERTOR PHYSICS

The key issues in the divertor area are adequate heat removal and simultaneous control of

particles and impurities.  The major research focus has been on the radiative divertor with

additional impurities to enhance the radiation.  The  challenge here is to maintain sufficient

impurity density in the divertor to promote the needed radiation while simultaneously keeping the

impurities from overwhelming the core plasma.

Through experiments on DIII–D [45-48] we have demonstrated the efficacy of using

induced scrape-off-layer (SOL) flows to preferentially enrich impurities in the divertor plasma.

These SOL flows are produced through simultaneous deuterium gas injection at the midplane and

divertor exhaust using cryopumping. Using this SOL flow, an improvement in enrichment

(defined as the ratio of impurity fraction in the divertor to that in the plasma core) has been

observed for all impurities in trace-level experiments (i.e., impurity level is non-perturbative),

with the degree of improvement increasing with impurity atomic number. In the case of argon,

exhaust gas enrichment using a modest SOL flow is as high as 17. Using this induced SOL flow

technique and argon injection, radiative plasmas have been produced that combine high radiation

losses (Prad/Pinput > 70%), low core fuel dilution (Zeff < 1.9), and good core confinement (τE>~

τE,ITER98Hy).

Besides the improvement in impurity enrichment, application of this technique causes

several advantageous changes in the plasma [49].  First, at a high flow level, the SOL broadens

and its density increases to 1.5×1019 m–3 while the electron temperature remains approximately

10 eV.  Such  profiles provide excellent screening of impurities emanating from the vessel wall

and an excellent environment for impurity radiation.  Second, the ELM amplitude is reduced by

approximately a factor of two relative to standard ELMing H-mode conditions.  This reduction is

accompanied by a proportional increase in the ELM frequency such that the time-integrated
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energy carried out by the ELMs is approximately the same, but the instantaneous perturbation on

the edge and divertor plasma induced by each ELM is much smaller.  Modeling has also shown

that the ELM dynamics are important in the obtainable impurity enrichment with higher

frequency ELMs leading to improved enrichment.  These changes are accomplished without

significant impact on the core energy confinement.

At the previous IAEA, we reported that parallel thermal conduction based on measured

divertor density and temperature profiles in detached plasmas is too small to account for the

divertor heat flux and postulated that in the cold divertor zone the dominant transport process is

convection along the field lines [38]. A one dimensional interpretive model of the detached

divertor plasma [49] has been developed for further understanding of the experimental

observations. The model calculates the parallel heat flux in the divertor plasma by integrating

plasma radiation, obtained from an inversion of the bolometer data, from the target to a point in

the divertor plasma and using the target heat flux, measured by an IR camera, as the boundary

condition.  The difference between this heat flux and the conduction heat flux, obtained from the

measured Te profile, yields the convective component of the heat flux.  It is found that in attached

plasmas, as shown in Fig. 13(a), the conduction component accounts for nearly all the heat flux.

In contrast, in the detached case, the conduction channel is insignificant compared to the total

heat flux [Fig. 13(b)] and convection at approximately the sound speed is required to account for

most of the heat flux [Fig. 13(c)]. Furthermore, it is concluded that the observed intense radiation

near the target plate must be due to volume recombination since the electron temperature

measured by Thomson scattering is too low for excitation radiation.

These experimental results are supported by UEDGE modeling [50] which shows a broad

regions of Mach ~ 0.4 and copious volume recombination near the target plate in detached

plasmas [Fig. 14(a)]. Recent measurements confirm these experimental interpretations and

UEDGE results. Visible and UV line ratio measurements [51,52] show direct evidence of volume

recombination [Fig. 14(b)].  Plasma parallel flow speeds at or near the sound speed are also
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observed by spectroscopy [Fig. 14(c)] [51] as well as a Mach probe [53]. From Langmuir probe

potential measurement [53], we also deduce poloidal Er×BT flows. The flow direction depends on

the direction of the toroidal field and heat and particle flux associated with it is estimated to

contribute significantly to particle exchange between the two divertor strike points and could

explain the field-dependent divertor in-out asymmetry.
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We have recently installed a divertor baffle and cryopump [54] at the upper divertor whose

shape is matched for particle control in high triangularity plasmas (δ ~ 0.7).  This installation,

combined with the more open pumped lower divertor allows a direct comparison of the effects of

geometry on divertor and core plasma performance. A comparison of open/closed divertor

operation was carried out with carefully matched plasmas. The cryopumps in each divertor were

turned off for this comparison.  We observed that the line-average density was very similar in the

two cases, but the midplane Dα was reduced in the closed divertor.  The density profile was less

steep near the separatrix for the closed case, and the temperature responded to keep the electron

pressure roughly constant. Transport modeling [54] indicates that the core ionization source was

reduced by a factor of about 2.6 in the closed case. No changes in energy confinement during
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ELMing H–mode operation were observed, but the line average density at which partial

detachment occurred was decreased by 20% for the closed case. With the upper cryopump turned

on, we achieved active density control with ne/nGr = 0.27, which is similar to the 0.22 achieved

with the lower pump. This establishes an important particle control tool for high triangularity

plasma operation in DIII–D. In 1999, we will install a third divertor cryopump for the purpose of

pumping the inner strike point in the upper divertor [54] . In addition, a structure in the private

flux region which protects the inner pump will serve also as a baffle to reduce the recycling by an

additional factor of 2 and isolate the two strike points.



T.S. Taylor, et al. RESULTS FROM THE DIII–D SCIENTIFIC RESEARCH PROGRAM

GENERAL ATOMICS REPORT GA–A23007 27

6. CONCLUSION

Research on DIII–D over the two years since the last IAEA meeting has made significant

progress in the core, edge and divertor areas.  We have demonstrated integrated, high

performance ELMing H–mode plasmas with βN H98y ~ 6 for 5 τE (~1 s).

In the core physics area, we have

• Shown that core transport barriers can be sustained for the length of the neutral beam

pulse (5 s) with no sign of degradation.

• Demonstrated off-axis electron cyclotron current drive with an efficiency well above

theoretical expectations.

• Made critical tests of physics-based transport models.

• Produced evidence for passive and active wall stabilization of MHD modes.

In the edge physics area, we have

• Demonstrated the role of edge bootstrap current in edge second stability regime

access.

• Developed and tested a physics model of the density limit which agrees with  Hugill-

Greenwald limit and which scales quite favorably to larger, hotter machines.

In the divertor physics area, we have

• Achieved a new understanding of convection and recombination in radiative divertor

plasmas.

• Produced enhanced divertor radiation with scrape off layer plasma flows and

impurity enrichment.
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This scientific progress sets the stage for future DIII–D research.  On a three year time

scale, with 6 MW of ECH power, we are aiming at an integrated demonstration of advanced

tokamak operation sustained for five seconds.  In the nearer term, our experiments will emphasize

expanding the spatial extent of internal transport barriers, regulating edge bootstrap currents,

stabilizing neoclassical tearing modes, feedback stabilizing high-beta resistive wall modes, and

developing the basis for radiative divertors in both single and double null configurations.
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