

LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII-D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR

Presented by D.P. SCHISSEL

for the DIII-D Team*

Presented to 16th IAEA Fusion Conference

> OCTOBER 7–11, 1996 Montreal, Canada

242–96 F1–CN–64/A5–3

IN COLLABORATION WITH

C.M. GREENFIELD, J.C. DeBOO, L.L. LAO, E.A. LAZARUS,¹ G.A. NAVRATIL,² B.W. RICE,³ G.M. STAEBLER, B.W. STALLARD,³ E.J. STRAIT, H.E. ST. JOHN, M.E. AUSTIN,⁴ K.H. BURRELL, T.A. CASPER,³ D.R. BAKER, V.S. CHAN, E.J. DOYLE,⁵ J.R. FERRON, C.B. FOREST, P. GOHIL, R.J. GROEBNER, W.W. HEIDBRINK,⁶ R.-M. HONG, A.W. HOWALD, C.-L. HSIEH, A.W. HYATT, G.L. JACKSON, J. KIM, C.J. LASNIER,³ A.W. LEONARD, J. LOHR, R.J. LA HAYE, R. MAINGI,⁷ R.L. MILLER, M. MURAKAMI,¹ T.H. OSBORNE, C.C. PETTY, C.L. RETTIG, T.L. RHODES,⁵ S. SABBAGH,² T.C. SCOVILLE, R.T. SNIDER, R.D. STAMBAUGH, R.E. STOCKDALE, P.L. TAYLOR, T.S. TAYLOR, D.M. THOMAS, M.R. WADE,¹ R.E. WATLZ, R.D. WOOD,³ and D.G. WHYTE⁸

¹Oak Ridge National Laboratory
²Columbia University
³Lawrence Livermore National Laboratory
⁴University of Maryland
⁵University of California, Los Angeles
⁶University of California, Irvine
⁷Oak Ridge Associated Universities
⁸INRS—Energie et Materiaux

242-96

KEY POINTS

- Plasmas with weak or negative central magnetic shear have exhibited reduced particle, heat, and momentum transport
- Local suppression of plasma turbulence has been correlated with transport reduction
- E×B shear decorrelation of turbulence is the leading candidate for explaining the reduced transport

NEGATIVE CENTRAL SHEAR PLASMAS SHOW A DRAMATIC IMPROVEMENT OVER DISCHARGES WITH A MONOTONIC q PROFILE

- Negative Central Shear (NCS) meaning a plasma with either weak or negative shear
- NCS with an L–Mode edge
 - NCS combined with L-mode edge conditions
 - Strong T_i and $\Omega_{\rm d}$ peaking inside NCS region
- NCS with an H–Mode edge
 - NCS combined with ELM–free H–mode edge conditions
 - Broader profiles

PLASMA POSITION ALLOWS NCS L- AND H-MODE EDGE CONTROL

- Double -null divertor with δ ~0.8
- Early NBI during Ip ramp
 - Low target ne, high Te
 - Freeze J(r) in core resulting in reversed or flat q profile
- L-mode and H-mode edge control accomplished by null bias
- Internal barrier forms with higher power NBI
 - H factors (τ relative to ITER89-P) of up to 4 have been achieved
 - Rapid increase in T_i and Ω_{Φ}
 - Modest increase in T_e and n_e resulting in larger T_i / T_e

L-MODE EDGE NCS PROFILES ARE MORE PEAKED THAN IN H-MODE EDGE DISCHARGES

- L–Mode edge NCS plasma profiles peak inside NCS region (ρ <0.5)
 - Leads to pressure driven MHD instabilities (β_N ~2.0–2.5)
- Broad H–Mode edge NCS plasma profiles result in enhanced performance
 - Combination of L-mode NCS core with H-mode edge

L-MODE EDGE PLASMA HAS REDUCED ION DIFFUSIVITY INSIDE NCS AREA AFTER FORMATION OF TRANSPORT BARRIER

- Ion transport about 4 times smaller inside NCS region (ρ <0.5) with more power
 - factor of 10 reduction has been observed at constant power
- Electron transport does not change within calculated uncertainties
 - 50% reduction has been observed in other discharges

NCS L-MODE EDGE DISCHARGE HAS LOWER CORE FLUCTUATIONS

- Reduced core fluctuations (FIR) correlated with reduced ion transport
 - Scattered Power proportional to \tilde{n}_e^2
- Fluctuation reductions consistent with reduced turbulence
 - e.g. Ion Temperature Gradient (ITG or η_{i}) modes

FLUCTUATIONS DECREASE IN TIME DURING NCS DISCHARGE

 Core density fluctuations (FIR) reduce as T_i increases with NCS established

ADDITION OF H-MODE EDGE TO THE NCS L-MODE REDUCES ION DIFFUSIVITY OVER ENTIRE PLASMA

- L–Mode edge discharge has reduced χ_i inside weak central shear area
- H–Mode edge discharge has reduced χ_i over entire cross–section
 - Approaches Chang-Hinton neoclassical at all radii
 - Neutral beam power balanced by ion-electron exchange and dW_i/dt
- Electron diffusivity remains relatively unchanged

NCS H-MODE EDGE DISCHARGE HAS LOW CORE/EDGE FLUCTUATIONS

- Reduced edge fluctuations (FIR) in NCS H–mode edge case correlated with reduced ion transport over entire plasma cross-section
 - Approximatately neo-classical ion transport in NCS H–mode edge

BASIC FEATURES OF SHEAR STABILIZATION MODEL

- Negative or weak magnetic shear allows stabilization of high n MHD modes (e.g., ideal ballooning modes)
- q > 1 everywhere stabilizes sawteeth
- Lack of these instabilities plus application of additional heating allows pressure and rotation gradients to build, thus increasing radial electric field

$$\boldsymbol{E}_{r} = \left(\boldsymbol{Z}_{i} \boldsymbol{e} \boldsymbol{n}_{i}\right)^{-1} \nabla \boldsymbol{P}_{i} - \boldsymbol{v}_{\theta i} \boldsymbol{B}_{\phi} + \boldsymbol{v}_{\phi i} \boldsymbol{B}_{\theta}$$

 Local transport bifurcation can occur based on sheared E×B flow decorrelation of turbulence [Hinton & Staebler, Phys. Fluids B5, 1281 (1993)]

$\ensuremath{\mathsf{E}\times\mathsf{B}}\xspace$ flow shear and turbulence

- Effect of E×B flow shear can be quantified by comparing the change in flow shear to turbulence growth rates
- Change in E×B flow shear determined by Doppler shift shear rate [Hahm & Burrell, Phys. Plasmas 2, 1648 (1995)]

$$- \omega_{\mathbf{E} \times \mathbf{B}} = \frac{\left(\mathbf{RB}_{\theta}\right)^{2}}{\mathbf{B}} \frac{\partial}{\partial \psi} \left(\frac{\mathbf{E}_{\mathbf{r}}}{\mathbf{RB}_{\theta}}\right)$$

- In previous work turbulent transport is completely suppressed when ω_{E×B} > γ_{max} based on 3-D non–linear ITG simulations [Waltz et al., Phys. Plasmas 1, 2229 (1994)]
 - γ_{max} is the maximum growth rate without E×B shear
- In this paper maximum linear growth rate γ_{max} is calculated considering both the ITG and dissipative trapped electron modes
 - Calculated from 3-D ballooning mode gyrokinetic stability code in the electrostratic limit [Kotchenreuther et al., Bull. Am. Phys. Soc. 37, 1432 (1992)]

EXB FLOW SHEAR IS A LEADING CANDIDATE TO EXPLAIN STABILIZATION OF MICROTURBULENCE

- L-Mode edge NCS plasma
- In the early low power phase γ_{max} is greater than ω_{ExB} over most of the plasma
- In the high power phase $\omega_{ExB} > \gamma_{max}$ in the region of reduced transport

THE REGION OF STABILITY IN THE CORE RESULTS FROM SEVERAL FACTORS REDUCING THE GROWTH RATE

Negative Magnetic Shear and Shafranov Shift are Stabilizing

• ω_{ExB} and γ_{max} calculated from experimental profiles during low power phase

T_i > T_e and Thermal Ion

Dilution by Fast lons are Stabilizing

GREATER NEGATIVE SHEAR IN L-MODE EDGE REDUCES TRANSPORT

- χ_i reduced with larger Δq ; within uncertainty χ_e remains the same
- $\bullet~\gamma_{max}$ and ϖ_{ExB} comparison does not explain the reduced ion transport
- No calculated instability (0.01 < $k_{\theta}\rho_{s}$ < 100) at ρ = 0.2
 - Yet electron transport not observed to be electron neoclassical

GREATER NEGATIVE SHEAR DOES NOT CHANGE TRANSPORT IN NCS H-MODE EDGE PLASMA

- χ_i and χ_e do not change with larger Δq
- γ_{max} smaller than ω_{ExB} at all radii
 - consistent with neoclassical ion transport over entire plasma cross-section
 - combining NCS L–mode core transport with H–mode edge transport

SUMMARY

- NCS plasmas provide a robust and reliable enhanced confinement regime with both an L-mode and H-mode edge
 - $\tau_{\rm E}$ up to 4 times ITER89–P
- NCS with L-mode edge
 - Peaked toroidal rotation, ion temperature and plasma density profiles consistent with an internal transport barrier
 - χ_i reduced to ion-neoclassical inside the transport barrier
 - Larger negative shear lowers ion transport
- NCS with H–mode edge
 - Broad plasma profiles consistent with improved transport over the entire plasma cross-section
 - χ_i reduced to ion-neoclassical over the entire plasma
 - Larger negative shear does not alter transport
- Lower transport is accompanied by reduced plasma fluctuations
- Primary candidate for microturbulence stabilization is sheared E × B flow
- NCS is necessary but not sufficient for enhanced confinement
 - Necessary for ballooning 2nd stability
 - Sheared $E \times B$ flow must be large enough to overcome turbulence growth rates

242-96