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KEY POINTS

● Plasmas with weak or negative central magnetic shear have
exhibited reduced particle, heat, and momentum transport

● Local suppression of plasma turbulence has been correlated
with transport reduction

● E×B shear decorrelation of turbulence is the leading candidate
for explaining the reduced transport



     

NEGATIVE CENTRAL SHEAR PLASMAS SHOW A DRAMATIC
IMPROVEMENT OVER DISCHARGES WITH A MONOTONIC q PROFILE

●  Negative Central Shear (NCS) meaning a plasma with either weak or negative shear

●  NCS with an L–Mode edge
—  NCS combined with L–mode edge conditions 
—  Strong Ti and Ωφ peaking inside NCS region

●  NCS with an H–Mode edge
—  NCS combined with ELM–free H–mode edge conditions 
—  Broader profiles
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PLASMA POSITION ALLOWS NCS L– AND H–MODE EDGE CONTROL
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●  Double -null divertor with δ~0.8

●  Early NBI during Ip ramp

●  L–mode and H–mode edge control
accomplished by null bias

●  Internal barrier forms with higher 
power NBI

— Low target ne, high Te
— Freeze J(r) in core resulting

in reversed or flat q profile

— H factors (τ relative to ITER89–P) 
of up to 4 have been achieved

— Modest increase in Te and ne 
resulting in larger Ti / Te

— Rapid increase in Ti and Ωφ

∆q = q(0) - qmin
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L–MODE EDGE NCS PROFILES ARE MORE PEAKED THAN
IN H–MODE EDGE DISCHARGES

●  L–Mode edge NCS plasma profiles peak inside NCS region (ρ<0.5)
—  Leads to pressure driven MHD instabilities (βN~2.0–2.5)

●  Broad  H–Mode edge NCS plasma profiles result in enhanced performance
—  Combination of L–mode NCS core with H–mode edge
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L–MODE EDGE PLASMA HAS REDUCED  ION DIFFUSIVITY INSIDE 
NCS AREA AFTER FORMATION OF TRANSPORT BARRIER

●  Ion transport about 4 times smaller inside NCS region (ρ<0.5) with more power
—   factor of 10 reduction has been observed at constant power

●  Electron transport does not change within calculated uncertainties
—   50% reduction has been observed in other discharges
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NCS L–MODE EDGE DISCHARGE HAS LOWER CORE FLUCTUATIONS
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Plasma CoreCore Plasma Edge

●  Reduced core fluctuations (FIR) correlated with reduced ion transport
—   Scattered Power proportional to ne

2

●  Fluctuation reductions consistent with reduced turbulence

—  e.g.  Ion Temperature Gradient (ITG or ηi) modes
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FLUCTUATIONS DECREASE IN TIME DURING NCS DISCHARGE

QTYUIOP

●  Core density fluctuations (FIR) 
reduce as Ti increases with
NCS established
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ADDITION OF H–MODE EDGE TO THE NCS L–MODE
REDUCES ION DIFFUSIVITY OVER ENTIRE PLASMA

●  L–Mode edge discharge has reduced χi inside weak central shear area

●  H–Mode edge discharge has reduced χi over entire cross–section

—  Approaches Chang–Hinton neoclassical at all radii

—  Neutral beam power balanced by ion-electron exchange and dWi /dt
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●  Electron diffusivity remains relatively unchanged
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NCS H–MODE EDGE DISCHARGE HAS LOW CORE/EDGE FLUCTUATIONS

●  Reduced edge fluctuations (FIR) in NCS H–mode edge case correlated
with reduced ion transport over entire plasma cross-section

—  Approximatately neo-classical ion transport in NCS H–mode edge
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BASIC FEATURES OF SHEAR STABILIZATION MODEL

● Negative or weak magnetic shear allows stabilization of high n MHD modes (e.g.,
ideal ballooning modes)

● q > 1 everywhere stabilizes sawteeth

● Lack of these instabilities plus application of additional heating allows pressure
and rotation gradients to build, thus increasing radial electric field

    E Z en P v B v Br i i i i i=( ) ∇ +−1 – θ φ φ θ

● Local transport bifurcation can occur based on sheared E×B flow
decorrelation of turbulence [Hinton & Staebler, Phys. Fluids B5, 1281 (1993)]
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E×B FLOW SHEAR AND TURBULENCE

● Effect of E×B flow shear can be quantified by comparing the change in flow
shear to turbulence growth rates

● Change in E×B flow shear determined by Doppler shift shear rate [Hahm & Burrell,

Phys. Plasmas 2, 1648 (1995)]

—
  

ωE×B =
RBθ( )2

B
∂

∂ψ
Er

RBθ













● In previous work turbulent transport is completely suppressed when ωE×B > γmax
based on 3-D non–linear ITG simulations [Waltz et al., Phys. Plasmas 1, 2229 (1994)]

— γmax is the maximum growth rate without E×B shear

● In this paper maximum linear growth rate γmax is calculated considering
both the ITG and dissipative trapped electron modes

— Calculated from 3-D ballooning mode gyrokinetic stability code in the
electrostratic limit [Kotchenreuther et al., Bull. Am. Phys. Soc. 37, 1432 (1992)]



     

ExB FLOW SHEAR IS A LEADING CANDIDATE TO
EXPLAIN STABILIZATION OF MICROTURBULENCE

●  L–Mode edge NCS plasma

●  In the early low power phase γmax is greater than ωExB over most of the plasma

●  In the high power phase  ωExB > γmax in the region of reduced transport
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THE REGION OF STABILITY IN THE CORE RESULTS
FROM SEVERAL FACTORS REDUCING THE GROWTH RATE 
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GREATER NEGATIVE SHEAR IN L–MODE EDGE REDUCES TRANSPORT

● χi reduced with larger ∆q; within uncertainty χe remains the same

● γmax and ωExB comparison does not explain the reduced ion transport

● No calculated instability (0.01 < kθρs < 100) at ρ = 0.2
—   Yet electron transport not observed to be electron neoclassical
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GREATER NEGATIVE SHEAR DOES NOT CHANGE
TRANSPORT IN NCS H–MODE EDGE PLASMA

●  χi and χe do not change with larger ∆q

●  γmax smaller than ωExB at all radii
—   consistent with neoclassical ion transport over entire plasma cross–section
—   combining NCS L–mode core transport with H–mode edge transport
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SUMMARY

● NCS plasmas provide a robust and reliable enhanced confinement regime with
both an L–mode and H–mode edge
— τE up to 4 times ITER89–P

● NCS with L–mode edge
— Peaked toroidal rotation, ion temperature and plasma density profiles consistent with

an internal transport barrier
— χi reduced to ion-neoclassical inside the transport barrier

— Larger negative shear lowers ion transport

● NCS with H–mode edge
— Broad plasma profiles consistent with improved transport over the entire plasma

cross-section
— χi reduced to ion-neoclassical over the entire plasma

— Larger negative shear does not alter transport

● Lower transport is accompanied by reduced plasma fluctuations

● Primary candidate for microturbulence stabilization is sheared E × B flow

● NCS is necessary but not sufficient for enhanced confinement
— Necessary for ballooning 2nd stability
— Sheared E × B flow must be large enough to overcome turbulence growth rates
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