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This work develops a quantitative understanding of the mechanisms for increased particle 
transport with electron heating in (quiescent) H-mode plasmas. We present DIII-D experi-
ments, conducted during the first DIII-D National Fusion Science Campaign, which demon-
strate that H-mode core particle transport and density peaking can be locally controlled by 
modulated electron cyclotron heating (ECH) [Fig. 1(a,b)]. Gyrokinetic simulations show 
density gradient-driven trapped electron modes (TEM) are the only unstable drift modes in 
the inner half-radius, where the density profile responds to local ECH. Particle and thermal 

Fig. 1. (a) Response of DIII-D QH-mode density profile to ECH: a/Ln is reduced by ECH where TEM is sole 
instability, while TEM critical density gradient a/Ln

crit is reduced by Te/Ti, (b) density response to modulated 
ECH is localized to inner half-radius, (c) DBS core density fluctuation intensity increases strongly during 
ECH at TEM wavenumbers 

€ 

kθρs~0.8 at the radius of TEM, (d) pronounced core density fluctuation feature 
at 

€ 

kθρs~2.8 seen with ECH, and (e) reduced a/Ln
crit quadruples the TEM growth rate during ECH. 
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energy transport driven by TEMs increases strongly with electron temperature, reducing the 
density gradient during ECH. Thus α-heating could reduce density peaking, providing a 
feedback loop for the self-regulation of fusion power. The DIII-D experiments complement 
Alcator C-Mod experiments which controlled H-Mode core particle transport with modulated 
minority ICRF heating [1,2]. In DIII-D, density profiles were obtained with high-resolution 
profile reflectometry, augmented by a suite of local fluctuation measurements. A consistent 
picture emerges from both studies, in which density gradient driven TEM turbulence is 
strongly driven by the increased electron temperature in conjunction with density peaking. A 
pronounced increase in core density fluctuations in the TEM range of wavelengths (

€ 

kθρs~ 
0.2–2) is observed during electron heating in both C-Mod and DIII-D [Fig. 1(c,d)].  

Extensive gyrokinetic simulations of the experiments, including several thousand linear 
and several hundred GS2 nonlinear TEM simulations for Alcator C-Mod, reproduce 
measured phase contrast imaging density fluctuation levels using a new synthetic diagnostic, 
while matching the energy transport inferred from TRANSP analysis. A new nonlinear 
upshift in the TEM critical density gradient, associated with zonal flow dominated states, 
increases strongly with collisionality [1,2]. In the C-Mod experiments, the density gradient is 
clamped by the nonlinear TEM critical density gradient at nearly twice the linear threshold in 
a new limit-cycle stability diagram [1], in close quantitative agreement with simulations. The 
DIII-D experiments, an order of magnitude lower in collisionality than C-Mod, test the 
predicted collisionality variation of the TEM nonlinear upshift while allowing Te/Ti to vary. 
Central densities of 9×1019 m-3 were obtained in DIII-D with low torque and gas fueling.  

As shown in Fig. 1(a,b), the density responds locally to ECH. The TEM driving factor, 
a/Ln=-d(ln n)/dρ, is reduced by ECH where the TEM dominates, with growth rate profile 
shown in Fig. 1(a) (before ECH). The increased Te/Ti due to ECH halves the critical density 
gradient from GYRO, quadrupling the TEM growth rate [Fig. 1(e)]. Density fluctuations 
from Doppler backscattering (DBS) increase markedly in the inner core during ECH, at TEM 
wavenumbers kθρs~0.8 in Fig. 1(c), while a pronounced core feature appears at kθρs~2.8 
[Fig. 1(d)]. Measurements near ρ~0.33 show that during ECH, intermittent quasi-coherent 
fluctuations at TEM wavelengths strengthen, while associated broadband turbulence 
intensifies and Doppler broadening is reduced (Fig. 2). The quasi-coherent modes appear to 
have adjacent high toroidal mode numbers n~28, separated in frequency by the Doppler shift; 
the GYRO TEM phase velocity varies only weakly with n. High resolution gyrokinetic 
simulations will be closely compared with these measurements. Density fluctuation levels 
from beam emission spectroscopy near ρ~0.7 also strongly increase during ECH. Core 
carbon density and metallic line intensities were strongly modulated by ECH, consistent with 
TEM expectations. Finally, profile stiffness 
tests were performed via gas puff modulation 
that varied a/Ln as well as collisionality. 
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Fig. 2. Frequency spectrum of inner core density 
fluctuations from DBS reveals high frequency 
quasi-coherent modes, with stronger broadband 
turbulence at TEM wave-numbers during ECH. 
Toroidal rotation slows during ECH, reducing 
Doppler broadening. 


