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A. Loarte4, R. Nazikian1, and P.B. Snyder2 
1Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA 
2General Atomics, San Diego, California 92186-5608, USA 
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Recent experiments on DIII-D have overcome a 
long-standing limitation in accessing quiescent H-mode 
(QH-mode) at high Greenwald density fraction (Fig. 1), 
a high confinement state of the plasma that does not 
exhibit the explosive instabilities associated with edge 
localized modes (ELMs). Comparisons of the 
dependence of the maximum density threshold for QH-
mode with plasma shape validate the underlying 
theoretical peeling-ballooning models describing ELM 
stability. High density QH-mode operation with strong 
shaping has allowed stable access to a previously 
predicted regime of very high pedestal dubbed “Super 
H-mode” [1] (Fig. 2). Importantly, QH-mode achieves 
ELM-stable operation while maintaining adequate 
impurity exhaust, due to the enhanced impurity transport 
from an edge harmonic oscillation (EHO), thought to be 
a saturated kink-peeling mode driven by rotation shear. 
Together with the simultaneous achievement of high 
beta, high confinement and low q95 for many energy 
confinement times, these results suggest QH-mode as a potentially attractive operating 
scenario for ITER’s Q=10 mission. 

Through the use of 
strong shaping, QH-
mode plasmas have been 
maintained at high 
densities as shown in 
Fig. 1, both absolute 
(  ) and 
normalized to the 
Greenwald density 
( , where 

 is the 
Greenwald density for 
plasma current Ip in MA 
and minor radius a in m). 
In these plasmas, gas 
puffing is added during 
the QH-mode phase, controlled via density feedback to follow a ramping density target. The 
plasma remains ELM stable until a threshold in density is reached. The EHO mode number 

Fig. 1. QH-mode maintained to high 
Greenwald fraction in strongly shaped 
plasma. 

Fig. 2. QH-mode pedestal pressure height, width, and gradient all increase as 
the density is increased, as predicted for plasmas operating along the kink-
peeling boundary. EPED modeling shows that the trajectory of increasing 
density provides access to a second ELM-stable regime (Super H-mode) at 
high pedestal parameters. 
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typically remains relatively constant during the density variation, until just prior to the return 
of ELMs, when the EHO appears to become less coherent.  

The pedestal is found to evolve to levels comparable with some of the highest 
performance transient pedestals seen on DIII-D, consistent with EPED [2] analysis of the 
pedestal height and width. At fixed βN, the height, width and gradient of the pedestal pressure 
all increase as the density increases, as shown in Fig. 2, and the increase in the density 
originates from the pedestal rather than via a peaking of the density profile. The excellent 
agreement between the experimental measurements and theory provides strong evidence that 
the EPED model can accurately describe the pedestals of plasmas in the kink-peeling regime, 
which is an important criterion for access to QH-mode, together with rotation shear [3,4]. 
Similar stability calculations using ITER's shape and other expected parameters predict that 
the ITER pedestal will naturally operate on the kink-peeling boundary where QH-mode can 
exist, even for pedestal densities exceeding 1020 m-3, a value significantly higher than the 
ITER design value. Accordingly, ITER's pedestal will be in the QH-mode parameter range of 
density and collisionality. 

The present high density QH-mode plasmas are found to access a second ELM stable 
region as shown in Fig 2. The challenge for accessing this regime is that a plasma running 
with fixed high density will necessarily encounter the lower pedestal solution first, inhibiting 
access to the high pedestal pressure solution predicted by EPED. In these experiments, by 
raising the density dynamically once the low collisionality QH-mode edge has formed along 
the kink-peeling boundary, these QH-mode plasmas avoid encountering the lower pedestal 
solution and enter a “channel” of high pressure and density that is otherwise inaccessible. 
This shows that the QH-mode parameter space is not characterized by physics associated 
with low density, but rather is correctly described by peeling-ballooning theory. 

Measurements of the impurity confinement time of non-recycling impurity fluorine have 
demonstrated that the EHO provides superior impurity exhaust relative to ELMs. This is an 
important result, because there is concern that ELM-stable regimes may suffer unacceptable 
impurity accumulation, and while ELMs are undesirable with respect to the potentially 
damaging periodic divertor heat loads, they are beneficial in terms of preventing impurities 
from accumulating in the core plasma. In addition, although the measured ExB shear is found 
to increase at low toroidal rotation, resulting in reduced 
turbulence and increased energy confinement, the 
impurity confinement time is not affected by rotation. 

Experiments have extended QH-mode to high 
normalized fusion performance, , with 
values for the confinement factor H89, βN and q95 
sustained at ITER relevant values for many energy 
confinement times in an ITER similar shape, as shown 
in Fig. 3. Taken as a whole, the compatibility of QH-
mode with high performance, high density, low torque 
operation, in a regime that is ELM stable while 
maintaining excellent impurity exhaust, suggests QH-
mode as a potentially attractive operating scenario for 
succeeding in ITER’s Q=10 mission. 
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Fig. 3. Demonstration of QH-mode 
sustained at ITER relevant parameters 
(dashed lines) for nearly 20τE. 


