
  

GA–A27773 

IMPACT OF CORE MODES, ISLANDS, 
AND INSTABILITIES ON RUNAWAY 

ELECTRON CONFINEMENT 
By 

R.A. MOYER, C. PAZ-SOLDAN, E.M. HOLLMANN, N.W. EIDIETIS, 
N. COMMAUX, R.S. GRANETZ, and P.B. PARKS 

 

 

 

 
 
 
 

 
 
 
 

 
APRIL 2014 



 

DISCLAIMER 

 

This report was prepared as an account of work sponsored by an agency of the United States 
Government.  Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights.  
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof.  The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof. 

 

 



  

GA–A27773 

IMPACT OF CORE MODES, ISLANDS, 
AND INSTABILITIES ON RUNAWAY 

ELECTRON CONFINEMENT 
By 

R.A. MOYER,* C. PAZ-SOLDAN,† E.M. HOLLMANN,* N.W. EIDIETIS, 
N. COMMAUX,‡ R.S. GRANETZ,¶ and P.B. PARKS 

This is a preprint of the synopsis for a paper to be presented at 

the Twenty-Fifth IAEA Fusion Energy Conf., October 13-18, 2014 

in Saint Petersburg, Russia. 

*University of California San Diego, La Jolla, California. 
†
Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee. 

‡
Oak Ridge National Laboratory, Oak Ridge, Tennessee. 

¶
Massachusetts Institute of Technology, Cambridge, Massachusetts. 

Work supported by 
the U.S. Department of Energy 

under DE-FG02-07ER54917, DE-AC00-06OR23100, DE-FC02-04ER54698, 
DE-AC05-00OR22725, and DE-FC02-99ER54512 

GENERAL ATOMICS PROJECT 30200 
APRIL 2014 





IMPACT OF CORE MODES, ISLANDS, AND INSTABILITIES ON RUNAWAY 
ELECTRON CONFINEMENT R.A. Moyer, et al. 

 GENERAL ATOMICS REPORT GA-A27773  1 

Impact of Core Modes, Islands, and Instabilities on Runaway  EX-S 
Electron Confinement 
 
R.A. Moyer1, C. Paz-Soldan2, E.M. Hollmann1, N.W. Eidietis3, N. Commaux4, 
R.S. Granetz5, and P.B. Parks3 
email: moyer@fusion.gat.com 
 
1University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0417, USA 
2Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830-8050, USA 
3General Atomics, PO Box 85608, San Diego, CA, 92186-5608, USA 

4Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA 
5Massachusetts Institute of Technology, 77 πMassachusetts Ave., Cambridge, MA 02139, 
USA 

 
Fast visible-NIR imaging of synchrotron emission from runaway electrons (RE) has been 
used in DIII-D [1] to study the generation, transport, and confinement of runaway electrons. 
Analysis of the synchrotron emission (SE) from runaway electrons with energies ≥25 MeV 
indicates that RE confinement is strongly affected by core islands, active MHD modes, and 
velocity space anisotropy-driven kinetic instabilities. In next-step tokamaks, such as ITER, 
large toroidal electric fields can be produced in un-mitigated disruptions or rapid shutdowns 
to mitigate disruption damage that would produce multi-megamps of REs with energies ≤100 
MeV. Understanding the production, confinement, and loss of these highly relativistic 
electrons is an ITER urgent need since they could damage the first wall. REs have been 
studied in DIII-D in two distinct classes of discharges: trace levels (~kA) of RE current 
produced by secondary avalanche acceleration of primary (Dreicer) seeds in steady-state (5 
s), quiescent ohmic discharges with several hundred kA of thermal plasma current [2]; and 
long-lived (up to 0.5 s) plateaus of hundreds of kA of RE current following the current 
quench of discharges terminated with the injection of argon cryogenic pellets [3,4]. 

 
Fig. 1.  Evolution of (a) plasma current Ip,, (b) line average density, and (c) hard x-ray signal HXR in quiescent 
runaway electron (QRE) discharges without (black) and with (red) an early locked mode. The grey vertical line 
indicates the time of the synchrotron emission images in (e) through (h). (d) Sawteeth in the electron 
temperature Te on the magnetic axis, for the same 2 QRE discharges. Synchrotron emission (SE) at (e,g) 45° and 
(f,h) 180° toroidally for the 2 QRE discharges in (a–d), indicating the axisymmetric structure of the emission 
crescent toroidally. The vacuum vessel, separatrix, q=1.5, 2, 2.5, and 3 surfaces, and the sawtooth inversion 
radii are indicated by the blue, red, white, and dashed yellow lines respectively.  

Quiescent runaway electron (QRE) discharges are produced in DIII-D by allowing the 
plasma density [Fig. 1(b)] to decay following the plasma current Ip ramp [Fig. 1(a)]. As the 
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density decays, trace levels of REs are accelerated, leading to increased hard x-ray emission 
[Fig. 1(c)]. The synchrotron emission (SE) pattern from REs with energies ≥ 25 MeV is 
crescent shaped, centered between the q=3/2 and q=3 surfaces [Fig. 1(e,f)] for discharges 
with significant sawteeth and without an early locked mode [black traces, Fig. 1(a–d)]. This 
crescent shape illustrates a strong high field/low field side asymmetry in the SE intensity, 
which is qualitatively consistent with the strong velocity pitch angle dependence of the SE, 
and conservation of the adiabatic invariant. The hollow core in the SE pattern shrinks 
significantly [Fig. 1(g,h)] in a QRE discharge with an early locked mode [red traces, 
Fig. 1(a–d)], suggesting that the sawteeth [Fig. 1(d)] transport REs to larger minor radius. 
Trapping and confinement of REs is also seen within slowly rotating 2/1 islands after error 
field penetration events in these discharges. 
 

 
Fig. 2. Evolution of (a) Ip and light emitted by argon pellet, (b) magnetic fluctuations, and (c) hard x-ray 
emission HXR for a discharge terminated with an argon pellet at 1200 ms that develops a 0.55 s runaway 
electron plateau of 350 kA. SE from (d) 1230 ms (left grey line), and (e) 500 ms (right grey line) in the plateau. 
In (d) and (e), the blue and red lines are the vacuum vessel and separatrix. The white contours are the locations 
of the q=1, 2, and 3 surfaces just before the argon pellet is injected into the plasma. 

RE plateaus with 300-500 kA of RE current for up to 0.5 s are generated in DIII-D by 
rapid discharge termination with argon cryogenic (“killer”) pellets, as shown in Fig. 2(a) 
through (c). The argon pellet in injected at 1200 ms, as indicated by the burst in visible light 
from the pellet [red trace in Fig. 2(a)] and induced MHD activity, as indicated by the 
magnetic fluctuations [Bdot, Fig. 2(b)]. The RE synchrotron emission pattern early in the 
post-current quench plateau at 1230 ms [left vertical grey line in Fig. 2(a–c)] has the expected 
tilted ellipse shape [Fig. 2(d)] due to the field line pitch and the finite velocity pitch angle 

€ 

ε = v⊥ v|| ~ 0.1. However, the SE pattern develops into a pronounced crescent shape during 
the plateau [Fig. 2(e)], indicating that at least some of the physics leading to these non-
elliptical SE patterns seen here and in the QRE discharges is generic, and not specific to 
either QRE or RE plateau conditions. This crescent pattern can be steady for long periods of 
time (≤0.5 second), but in some cases, the crescent pattern relaxes rapidly (within <50 µs) 
into an ellipse correlated with a burst of gamma rays, indicating rapid loss of RE confinement 
to the vessel walls. This behavior is suggestive of a velocity space anisotropy-driven 
instability which might be a problem for controlled dissipation of RE plateaus following 
disruption mitigation in ITER. 
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