

Understanding Confinement In Advanced Inductive (AI) Scenario Plasmas - Dependence On Gyroradius And Rotation

P.A. Politzer¹, C.D. Challis², E. Joffrin³, T.C. Luce¹, M. Beurskens², P. Buratti⁴, F. Crisanti⁴, J.C. DeBoo¹, J.R. Ferron¹, C. Giroud², J. Hobirk⁵, C.T. Holcomb⁶, A.W. Hyatt¹, F. Imbeaux³, R.J. Jayakumar¹, I. Jenkins², J.E. Kinsey¹, R.J. La Haye¹, D.C. McDonald², C.C. Petty¹, F. Turco⁷, and M.R. Wade¹

¹General Atomics, ²EURATOM/CCFE, ³Associatione Euratom CEA, ⁴Associazione Euratom-ENEA, ⁵Max-Planck-Institut für Plasmaphysik, ⁶Lawrence Livermore National Laboratory, ⁷Oak Ridge Institute for Science Education

SUMMARY OF OBSERVATIONS AND RESULTS

- Determined the scaling of global energy confinement and local heat transport with normalized plasma size ($\rho * \equiv \rho_i/\alpha$) for AI (hybrid) scenario plasmas.
- Obtained good matches between JET and DIII-D plasmas for > global energy confinement scaling
- > identity plasmas (all dimensionless parameters the same)) at the extremes of the $\rho*$ range (all except $\rho*$ matched)
- a range of \sim 2.7; about the same as from JET to ITER.

- Key results:

generally Bohm-like transport, global scaling: $B\tau_E \propto \rho_*^{-1.9}$, local transport: matched profiles for $0.45 \le \rho \le 0.85$,

Physics-based extrapolation by nondimensional scaling

- Advanced inductive plasmas are a realization of the ITER hybrid scenario, providing high neutron fluence in a long duration inductive discharge,
- Extrapolation of the performance of AI plasmas depends on the scaling of transport with plasma size.
- Determining the scaling of performance with dimensionless parameters is a robust and rigorous method for development of scaling laws.
- A key parameter for extrapolation to ITER and reactors is $\rho * = (ion gyroradius)/(minor radius).$

Using both JET and DIII-D extends $\rho *$ scaling range

• The accessible range in $\rho*$ is large: ~2.7 from high $\rho *$ in DIII-D to low $\rho *$ in JET,

DIII-D (high $\rho*$) and JET (low $\rho*$) use different methods to prepare AI plasmas

- for $\chi_{i,e}/\chi_B \propto \rho_* \alpha_{i,e}$, obtain α_i = -0.57 and $\alpha_e \sim$ -0.42, at ρ = 0.65, (χ_B = T/eB)
- Projection to ITER performance will require scaling with v*, and better understanding of rotation and T_e/T_i dependences.
- Determined the dependence on rotation of global confinement for AI plasmas in DIII-D.
- over the accessible rotation range (a factor of ~4.5) τ_F increases by ~60% and the scaling multipliers H_{89} and H_{98y2} increase by ~30%.
- determined the behavior of the m/n=3/2 NTM island as rotation changes and the effect of the NTM on confinement:
- > at low rotation, there is a 10-15% penalty in τ_F due to the NTM; at high rotation, this decreases to 5-10%.

JET and DIII-D shapes are very well matched

- Discharges from identity comparison data set.
- JET plasma dimensions reduced by 1.675.
- rms gap between shapes is 19 mm - largest deviation is lower-outer squareness.
- Shapes are similar to ITER: ε = 0.31 (ITER = 0.32) $\kappa_x = 1.75$ (ITER = 1.85)
- δ = 0.36 (ITER = 0.480

a^{11/4}

- about the same as the range from JET to ITER.

• Assume that the thermal diffusivity has a power

 $\chi/\chi_{\mathbf{B}} \propto \rho_*^{\alpha}$

 $\chi_{B} = T/eB$

> If all other parameters are fixed, the

selected for this global comparison.

– also good matches of β , v_* , and M.

0.315

1.51

2.92

0.854

0.594

5.58

1.097

1.29

– good matches of n_e, T_e, and T_i profiles,

then the global energy confinement time will

 $(eB/m)\tau_{E} \propto \rho_{*}^{-(2+\alpha)}F(v_{*}, \beta, q, T_{i}/T_{e}, \varepsilon, ...)$

dependence of $B\tau_E$ on ρ_* can be determined.

• Eight matched time slices (4 JET & 4 DIII-D) were

DIII-D

0.298

1.54

2.68

0.715

1.222

1.32

mean mean %

 Δ/Σ

2.7

0.7

5.4

4.4 $\kappa_{a} = V/2\pi^{2}Ra^{2}$

0.563 2.7 $v_{*e}^{\dagger} = n_e a / T_e^2$ (@p=0.5)

5.45 1.2 $\beta_T^{\dagger} = n_e (T_e + T_i) / B^2 (@\rho = 0.5)$

1.2 $\Sigma = sum$

 Δ = difference

8.9 $q_{CYI}^{\dagger} = 5Ba^2\kappa/IR \ (@\rho=0.5)$

law dependence on ρ_* :

where

scale like

parameter JET

a/R

κ_a

q_{cyl}

ℓ_i(3)

 v_{*e}

 T_i/T_e

H_{98y2}

 \mathbf{P}

- There are three key elements to this study:
- determining the scaling with $\rho *$ of the global energy confinement time normalized to the ion gyro-period, $(eB/m_i)\tau_E$ (or $B\tau_E$ for convenience),
- demonstration of identity discharges in the two tokamaks, and
- assessment of the scaling with $\rho *$ of the local heat diffusivity (normalized to the Bohm diffusivity), $\chi/\chi_B = \chi/(T/eB)$.

Global scaling of energy confinement time is Bohm-like

- Here ρ_{*s} is obtained using the target temperature for each point (T = $a^{1/3}B^{2/3}$). Using the volumeaveraged T yields $\rho_*^{-2.12}$; using W_{th}/n_e gives $\rho_*^{-2.51}$.
- Can account for small variations in q and β using ITER98(y,2) scaling: $B\tau_{98y2} \propto q^{-3}\beta^{-0.9}$, giving $\rho *^{-2.30}$.

- The ITPA database of hybrid discharges (AUG, DIII-D, JET, and JT-60U) shows a strong dependence of H_{98v2} on $\rho*$.
- When only the matched plasmas are compared, little or no dependence is seen.

Identity matches confirm physics basis

dimensionless parameters – not scaled

- only the plasma dimensions are varied
- all dimensionless parameters are fixed.
- Good match indicates
- same physics governs both tokamaks
- the set of dimensionless parameters represents these processes.
- Profiles compared for 0.45 $\leq \rho \leq$ 0.85 (52% of plasma volume)
- Good matches found for pairs of time slices in three JET and eight DIII-D discharges.
- Dimensionless parameters ($\rho *, \beta, v *, M$) match without scaling.
- Test whether same physics is occurring: \Rightarrow compare scaled heat flux: $q = -n\chi \nabla T \propto a^{-11/4}$, $(a_{JET}/a_{DIII-D})^{11/4} = 4.1$

DIII-D & JET scaled electron and ion heat fluxes

- Mean and std. dev. for best 25 pairs.
- Result is consistent with global confinement scaling.
- α_e ≈ α_i.
- Strong dependence on radius – α more negative as radius increases.
- Indicates that scaling to ITER will be Bohm-like.

In DIII-D AI plasmas, global confinement improves as rotation increases; effect of NTM island is also reduced

Compare high and low input torque at

• From lowest to highest accessible rotation (factor of ~ 4.5), both H_{89P} and H_{98v2} increase by ~25%. • Dominant effect is increase in ExB flow shear

• Island width of m/n = 3/2 NTM decreases as

Density decrease with ECH appears to be coupled to rotation change

- constant β ,
- vary the mix of co- and counter-NBI.
- In spite of large difference (factor of 3) in rotation, density and temperature profiles are little changed.
- Large decrease in ExB flow shear.
- Large (factor of 2) increases in all transport coefficients.

- supported by transport modeling.
- Energy confinement time is more sensitive to change in rotation at lower q_{95} .

- rotation increases.
- probably due to increased flow shear.
- Effect on confinement is stronger at low q_{95}
- island width is larger and q = 3/2 surface is at larger radius.
- Difference in confinement effect of NTM at low vs high rotation is 4-6%
- effect of NTM is smaller than that of ExB flow shear.

- DIII-D experiments have addressed the dependence of confinement on T_e/T_i .
- For a matched pair of discharges, with the same values of β and rotation
- one with 3.5 MW of ECH and the other using counter-NBI to match the rotation,
- \Rightarrow the same density decrease occurs in both.
- This appears to indicate that the density 'pump-out' often seen with ECH is an indirect consequence of electron heating coupled to the reduction in rotation

• Indicates an avenue for further research.

