
• Determined the scaling of global energy confinement and local heat 
transport with normalized plasma size (ρ∗ ≡ ρi/a) for AI (hybrid) 
scenario plasmas.

   – Obtained good matches between JET and DIII-D plasmas for
   › global energy confinement scaling
   › identity plasmas (all dimensionless parameters the same)
   › at the extremes of the ρ∗ range (all except ρ∗ matched)
      – a range of ~2.7; about the same as from JET to ITER.

   – Key results:
 generally Bohm-like transport,
 global scaling: BτE ∝ ρ∗-1.9,
 local transport:
  matched profiles for 0.45 ≤ ρ ≤ 0.85,
  for χi,e/χB ∝ ρ∗αi,e, obtain αi = -0.57 and αe ~ -0.42, at ρ = 0.65,
  (χB = T/eB)

   – Projection to ITER performance will require scaling with ν∗, and
   better understanding of rotation and Te/Ti dependences.

• Determined the dependence on rotation of global confinement for AI 
plasmas in DIII-D.

   – over the accessible rotation range (a factor of ~4.5) τE increases
   by ~60% and the scaling multipliers H89 and H98y2 increase by ~30%.

   – determined the behavior of the m/n=3/2 NTM island as rotation
   changes and the effect of the NTM on confinement:
      › at low rotation, there is a 10-15% penalty in τE due to the NTM;
         at high rotation, this decreases to 5-10%.

SUMMARY OF OBSERVATIONS AND RESULTS Physics-based extrapolation by nondimensional scaling
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• The accessible range in ρ∗ is large: 
~2.7 from high ρ∗ in DIII-D to low ρ∗ in JET,
– about the same as the range from JET to ITER.

• There are three key elements to this study:

   – determining the scaling with ρ∗ of the global energy confinement time
   normalized to the ion gyro-period, (eB/mi)τE (or BτE for convenience),

   – demonstration of identity discharges in the two tokamaks, and

   – assessment of the scaling with ρ∗ of the local heat diffusivity
   (normalized to the Bohm diffusivity), χ/χB = χ/(T/eB).

DIII-D (high ρ∗) and JET (low ρ∗) use different
methods to prepare AI plasmas
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• A broad current profile is 

thought to be a key 
element of AI operation.

• In JET, broad current 
profile is established by 
current overshoot;
in DIII-D, early heating is 
used.

• In DIII-D, NTM appears at 
beginning of high β phase 
– plasma is stationary 
afterward;
in JET, NTM occurs after 
evolution of current 
profile,
– JET has several seconds 
of NTM-free high β 
operation.

JET and DIII-D shapes are very well matched
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• Discharges from identity comparison
data set.

• JET plasma dimensions reduced
by 1.675.

• rms gap between shapes is 19 mm
– largest deviation is lower-outer
   squareness.

• Shapes are similar to ITER:
ε = 0.31 (ITER = 0.32)
κx = 1.75 (ITER = 1.85)
δ = 0.36 (ITER = 0.480

Global scaling of energy confinement time is Bohm-like
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• Advanced inductive plasmas are a realization of the ITER hybrid scenario, 
providing high neutron fluence in a long duration inductive discharge,

• Extrapolation of the performance of AI plasmas depends on the scaling of 
transport with plasma size.

• Determining the scaling of performance with dimensionless parameters is a 
robust and rigorous method for development of scaling laws.

• A key parameter for extrapolation to ITER and reactors is
 ρ∗ = (ion gyroradius)/(minor radius).

Using both JET and DIII-D extends ρ∗ scaling range

• Assume that the thermal diffusivity has a power 
law dependence on ρ∗:
    χ/χB ∝ ρ∗α

where 
    χB = T/eB
then the global energy confinement time will 
scale like
 (eB/m)τE ∝ ρ∗-(2+α)F(ν∗, β, q, Ti/Te, ε, ...)

 › If all other parameters are fixed, the 
dependence of BτE on ρ∗ can be determined.

• Eight matched time slices (4 JET & 4 DIII-D) were 
selected for this global comparison.
– good matches of ne, Te, and Ti profiles,
– also good matches of β, ν∗, and M.

parameter JET  DIII-D Δ/Σ
   mean mean %

a/R   0.315 0.298 2.7
κa   1.51  1.54  0.7
qcyl

†  2.92  2.68  4.4
li(3)   0.854 0.715 8.9
ν∗e

†  0.594 0.563 2.7
βT

†   5.58  5.45  1.2
Ti/Te   1.097 1.222 5.4
H98y2  1.29  1.32  1.2

κa = V/2π2Ra2

qcyl
† = 5Ba2κ/IR (@ρ=0.5)

ν∗e
† = nea/Te

2 (@ρ=0.5)

βT
† = ne(Te+Ti)/B2 (@ρ=0.5)

Δ = difference

Σ = sum

• The ITPA database of hybrid discharges
(AUG, DIII-D, JET, and JT-60U) shows a
strong dependence of H98y2 on ρ∗. 

   When only the matched plasmas are
compared, little or no dependence is seen. 

Matching at extremes of ρ∗ range gives local transport scaling – also Bohm-likeIdentity matches confirm physics basis

• Identity match:
– only the plasma dimensions are varied
– all dimensionless parameters are fixed.

• Good match indicates
– same physics governs both tokamaks
– the set of dimensionless parameters represents these processes.

• Profiles compared for 0.45 ≤ ρ ≤ 0.85
 (52% of plasma volume)

• Good matches found for pairs of time slices in three JET and eight 
DIII-D discharges.

• Dimensionless parameters (ρ∗, β, ν∗, M) match without scaling.

• Test whether same physics is occurring:
⇒ compare scaled heat flux:
        q = –nχ∇T ∝ a-11/4,  (aJET/aDIII-D)11/4 = 4.1  

DIII-D & JET measured profiles
scaled by plasma size

dimensionless parameters – not scaled
DIII-D & JET scaled electron and ion heat fluxes

DIII-D & JET measured profiles
scaled by size and magnetic field

dimensionless parameters – not scaled
+ ρ∗ × a5/6B2/3

• compare lowest ρ∗ in JET with 
highest in DIII-D
– select pairs with
       ρ∗DIII-D/ρ∗JET ≥ 2.3 @ ρ = 0.65

• Measured profiles match well when
   scaled by a and B

• Dimensionless parameters
   (except ρ∗) match without scaling,
– ρ∗ profiles match when scaled.

• For q = -nχ∇T and χ = χBρ∗α,

               q ~ a-2/3B5/3ρ∗α 

– α can be determined from the ratio
   qJET/qDIII-D (scaled).

DIII-D & JET scaled heat fluxes

• Mean and std. dev. for best 25 
pairs.

• Result is consistent with global 
confinement scaling.

• αe ≈ αi.

• Strong dependence on radius
– α more negative as radius 
increases.

• Indicates that scaling to ITER will 
be Bohm-like.

In DIII-D AI plasmas, global confinement improves as rotation increases;
effect of NTM island is also reduced

• Compare high and low input torque at 
constant β,
– vary the mix of co- and counter-NBI.

• In spite of large difference (factor of 3) in 
rotation, density and temperature profiles 
are little changed.

• Large decrease in ExB flow shear.

• Large (factor of 2) increases in all transport 
coefficients.

• From lowest to highest accessible rotation 
(factor of ~4.5),
both H89P and H98y2 increase by ~25%.

• Dominant effect is increase in ExB flow 
shear
– supported by transport modeling.

• Energy confinement time is more sensitive 
to change in rotation at lower q95.

– Central Mach number is proportional to
angular momentum: M(0) ≈ 0.83 L

• Island width of m/n = 3/2 NTM decreases as 
rotation increases.
– probably due to increased flow shear.

• Effect on confinement is stronger at low q95
– island width is larger and 
   q = 3/2 surface is at larger radius.

• Difference in confinement effect of NTM at 
low vs high rotation is 4-6%
– effect of NTM is smaller than that of
   ExB flow shear.

Density decrease with ECH appears to be
coupled to rotation change
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• DIII-D experiments have addressed the 
dependence of confinement on Te/Ti.

• For a matched pair of discharges, with the 
same values of β and rotation
– one with 3.5 MW of ECH
   and the other using counter-NBI to
      match the rotation,
⇒ the same density decrease occurs in
    both.

• This appears to indicate that the density 
‘pump-out’ often seen with ECH is an 
indirect consequence of electron heating
– coupled to the reduction in rotation

• Indicates an avenue for further research.

AUG DIII-D JET JT-60U
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• The best fit for the eight selected plasmas is 
BτE ∝ ρ∗-1.91.

• Here ρ∗s is obtained using the target temperature
for each point (T = a1/3B2/3). Using the volume-
averaged T yields ρ∗-2.12; using Wth/ne gives ρ∗-2.51.

• Can account for small variations in q and β using
ITER98(y,2) scaling: Bτ98y2 ∝ q-3β-0.9, giving ρ∗-2.30.
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