Characterization of the Effective Torque Profile Associated With Driving Intrinsic Rotation on DIII-D

By W.M. Solomon¹

In Collaboration with K.H. Burrell², J.S. deGrassie², J.A. Boedo³, P.H Diamond³, A.M. Garofalo², T.S. Hahm¹, R.A. Moyer³, S.H. Muller³, C.C. Petty², H. Reimerdes⁴, G.R. Tynan³, and R.E. Waltz²

- 1 Princeton Plasma Physics Laboratory, Princeton, NJ, USA
- 2 General Atomics, San Diego, CA, USA
- 3 University of California, San Diego, USA
- 4 Columbia University, New York, USA

Presented at the Twenty-third IAEA Fusion Energy Conference Daejeon, Republic of Korea October 11-16, 2010

- Toroidal rotation can enhance fusion performance through improvements in stability and confinement
- In present devices, rotation is usually driven by external means through neutral beam input, as a by-product of heating
- In future burning plasmas including ITER, using beams for momentum input becomes increasingly challenging
- Ultimately want to answer whether intrinsic drive is sufficient to provide significant levels of rotation for ITER

Intrinsic Rotation Must Manifest Itself From Terms in Toroidal Angular Momentum Balance Equation

Turbulence drivenIndependent of velocity

Other unspecified torques

Intrinsic Torque Profile Can Be Measured With Beams By Zeroing Out Rotation Profile

- With co-current NBI torque, rotation is also co-l_p
- By adjusting torque slightly counter, rotation is essentially zero across profile
- Intrinsic torque balanced by beam torque

$$\eta_{\scriptscriptstyle NBI} + \eta_{\scriptscriptstyle \mathrm{intrinsic}} = 0$$

$$\rightarrow \eta_{\text{intrinsic}} = -\eta_{NBR}$$

Intrinsic Torque Profile in H-Mode Plasmas Always Peaked at the Edge

- Intrinsic torque at the edge (0.8 < ρ < 1) found to be
 - Always co-current directed
 - Typically comparable to between 0.5-1 NB source
- Torque inside of mid-radius typically negligible by comparison

Edge Intrinsic Torque Is Well Correlated with Edge Pressure Gradient

- Qualitatively suggestive of turbulence driven stress generating intrinsic rotation
 - Turbulent residual stress can be driven via ExB shear or other profile shear
- Shear in H-mode pedestal may provide mechanism to drive intrinsic rotation in future devices

Solomon et al, PoP (2010)

But... Probe Measurements Find Turbulent Stress Does Not Match Intrinsic Torque

 Conclude there are additional torques at edge contributing to intrinsic drive

Muller et al, to be published

Intrinsic Drive Appears to Originate from Narrow Region at the Edge

- Edge rotation layer observed within 50 ms of L-H transition
 - At time when core rotation remains low

Intrinsic Drive Appears to Originate from Narrow Region at the Edge

- Edge rotation layer observed within 50 ms of L-H transition
 - At time when core rotation remains low
- Core intrinsic rotation develops over time
- Therefore, edge layer may contribute "seed" to core intrinsic rotation

Simple Model of Thermal Ion Orbit Loss Qualitatively Reproduces Edge Rotation Layer

- Estimate velocity resulting from loss cone of counter-going thermal ions whose orbits are lost to divertor [deGrassie et al, NF 2009]
- Thermal ion orbit loss may help explain missing torque

Intrinsic Torque Profile Can Also Be Measured in Plasmas With Finite Rotation

• Apply torque step and measure evolution of angular momentum

$$\frac{dL(\rho)}{dt} = T_{\text{NBI}}(\rho) + T_{\text{intrinsic}}(\rho) - \frac{L(\rho)}{\tau_{\phi}(\rho)} \text{ with } L(\rho) = \int_{0}^{\rho} nmRV_{\phi} \, dV$$

- At each ρ, solve for two unknowns T_{intrinsic}(ρ) and τ_φ(ρ) from time history of data
 - Highly over-determined
- Gives quantitatively similar result to measurement obtained by zeroing rotation

Intrinsic Torque Persists Even in Plasmas With Finite External Momentum Input

- In fact, intrinsic torque is enhanced at rapid rotation
 - Approx 0.1 Nm per 100 km/s of (mid-radius) rotation
- Intrinsic torque increases with β_N
 - Result of larger ∇P at the edge

Intrinsic Torque Inside of Mid-Radius Tends to Be Relatively Small

- Much weaker compared with edge, even for similar ∇P
- But, certain conditions have been found where core intrinsic torque can be large enough to affect rotation profile
- Might core intrinsic drive be exploited to control ITER rotation?

QH-Mode Plasmas Exhibit Significant Counter Intrinsic Drive in Core

- QH-mode plasmas have edge intrinsic torque compatible with standard H-mode
- However, a significant counter-I_p intrinsic drive is found through the bulk of the plasma
- Torques from two regions are opposing
 - Net result is actually slightly counter-Ip directed
 - Helps sustain large counter rotation of QH-mode plasmas

Core Intrinsic Torque Might Be Exploited to Generate Highly Sheared Rotation Profiles

- Intrinsic torque profile in hybrids qualitatively similar to that seen in some QH-modes
- In burning plasma with limited external momentum input, such an intrinsic torque profile would naturally produce a sheared rotation profile
- Very different torque profile than most present-day scenarios with NBI

Electron Cyclotron Heating May Provide Tool for Modifying Intrinsic Drive in the Core

 ECH H-mode plasmas often show hollow intrinsic rotation profiles

[e.g. deGrassie PoP 2007]

- Suggests possible counter drive in core from ECH
- Measurements confirm that application of ECH to conventional H-mode produces counter intrinsic torque in the core

Conclusions

- Edge pedestal capable of generating an intrinsic torque that is robustly observed in all H-modes
 - Evidence exists that both residual stress and thermal ion orbit loss may contribute to the edge intrinsic torque
- Additional intrinsic drive is sometimes observed in the core, which may be beneficial in enhancing core rotation shear

