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Motivation

Toroidal rotation can enhance fusion performance through
improvements in stability and confinement

* In present devices, rotation is usually driven by external means
through nevutral beam input, as a by-product of heating

e In future burning plasmas including ITER, using beams for
momentum input becomes increasingly challenging

 Ultimately want to answer whether intrinsic drive is sufficient to
provide significant levels of rotation for ITER
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Intrinsic Rotation Must Manifest Itself From Terms in

Toroidal Angular Momentum Balance Equation
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Intrinsic Torque Profile Can Be Measured With Beams

By Zeroing Out Rotation Profile
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Intrinsic Torque Profile in H-Mode Plasmas Always

Peaked at the Edge
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Edge Inirinsic Torque Is Well Correlated with

Edge Pressure Gradient

* Qualitatively suggestive of
turbulence driven siress
generating intrinsic rotation

— Turbulent residual stress can be

driven via ExB shear or other
profile shear

 Shearin H-mode pedestal may
provide mechanism to drive
intrinsic rotation in future devices
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But... Probe Measurements Find Turbulent Stress Does

Not Match Intrinsic Torque

Conclude there are

additional torques at edge
contributing to intrinsic drive

Intrinsic torque (meas)
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Intrinsic Drive Appears to Originate from Narrow

Region at the Edge

Edge rotation layer observed 60
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Intrinsic Drive Appears to Originate from Narrow

Region at the Edge
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Simple Model of Thermal lon Orbit Loss Qualitatively

Reproduces Edge Rotation Layer

Estimate velocity resulting from loss cone of counter-going thermal
ions whose orbits are lost to divertor [deGrassie et al, NF 2009]

Thermal ion orbit loss may help explain missing torque

Toroidal Mach Number

1_

Probe measurement

Orbit loss model_
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Intrinsic Torque Profile Can Also Be Measured in

Plasmas With Finite Rotation

 Apply torque step and measure evolution of angular momentum
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Intrinsic Torque Persists Even in Plasmas With Finite

External Momentum Input
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Intrinsic Torque Inside of Mid-Radius Tends to Be

Relatively Small
* Much weaker compared with edge, even for similar VP

e But, certain conditions have been found where core intrinsic torque
can be large enough to affect rotation profile

* Might core intrinsic drive be exploited

to control ITER rotation? NG torque density
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QH-Mode Plasmas Exhibit Significant Counter Intrinsic

Drive in Core
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Core Intrinsic Torque Might Be Exploited to Generate

Highly Sheared Rotation Profiles

 Intrinsic torque profile in hybrids qualitatively similar to that seen in
some QH-modes
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Electron Cycloiron Heating May Provide Tool for

Modifying Intrinsic Drive in the Core

* ECH H-mode p|CISIT.ICIS. . 02 Intrinsic.torque de-nsity (Nm-/m3)
often show hollow intrinsic 0.1F

rotation profiles
[e.g. deGrassie PoP 2007]

— Suggests possible counter
drive in core from ECH

e Measurements confirm that
application of ECH to
conventional H-mode
produces counter intrinsic
torque in the core
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Conclusions

 Edge pedestal capable of generating an intrinsic torque that is
robustly observed in all H-modes

— Evidence exists that both residual stress and thermal ion orbit loss may
conftribute to the edge intrinsic torque

 Additional intrinsic drive is sometimes observed in the core, which
may be beneficial in enhancing core rotation shear
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