Optimization of the Safety Factor Profile for High Noninductive Current Fraction Discharges in DIII-D

by
J.R. Ferron

With
C.T. Holcomb2, T.C. Luce1, P.A. Politzer1, F. Turco3, A.E. White3, J.C. DeBoo1, E.J. Doyle4, A.W. Hyatt1, R.J. La Haye1, M. Murakami5, T.W. Petrie1, C.C. Petty1, T.L. Rhodes4, L. Zeng4

1General Atomics2Lawrence Livermore National Laboratory3Oak Ridge Institute for Science & Education4University of California, Los Angeles5Oak Ridge National Laboratory

Presented at the Twenty-third IAEA Fusion Energy Conference Daejeon, Republic of Korea

October 11-16, 2010
Introduction
In a Steady-State Tokamak the q Profile is Closely Coupled to Both Transport Coefficients and Noninductive Current Sources

- **Bootstrap**: depends on n, T profiles, local q

\[
\langle J_{BSB} \rangle = -\frac{F q}{B T_0 \rho} \left[T_e \frac{\partial n_e}{\partial \rho} L_{31} + n_e \frac{\partial T_e}{\partial \rho} (L_{31} + L_{32}) + T_i \frac{\partial n_i}{\partial \rho} L_{31} + n_i \frac{\partial T_i}{\partial \rho} (L_{31} + \alpha L_{34}) \right]
\]

- **Transport**: depends on the q profile and determines the n, T profiles
- **Steady-state**: at high f_{BS}, the q profile is largely determined by the J_{BS} profile
- **Stability limit**:
 - Limits on pressure depend on the q profile
 - Reducing n, T gradients increases the β_N limit
- **Presently this complex interdependence is difficult to understand using only models**
n, T Profiles were Measured vs q Profile at $\beta_N = 2.8$ and at the Maximum P_{beam}, then J_{BS}, f_{BS}, J_{NI}, f_{NI} were Calculated.

- $q_{min} \approx 1, 1.5, 2$, $q_{95} \approx 4.5, 5.6, 6.8$
- Measured and calculated profiles averaged during phase of approximately constant β_N
- Maximum β_N close to the calculated ideal-wall $n = 1$ stability limit.

![Graph showing safety factor (q) vs normalized radius with $\beta_N = 2.8$.](image)

![Graph showing β_N vs q_{95} for different values of q_{95}.](image)
Temperature and Density Profiles
T_e and T_i Profiles Broaden as q_{min} is Increased ($\beta_N = 2.8$)

- T_e, T_i increase as q_{95} is decreased
- $dT_e/d\rho$, $dT_i/d\rho$ increase in the H-mode pedestal as q_{95} decreases
At the Maximum Achieved β_N, the Temperature Profiles are Nearly Independent of q_{min}

- Profiles at $q_{\text{min}} \approx 1$ and ≈ 1.5 are significantly broader at higher β_N
- Temperature dependence on q_{95} is still present
Pumping of the Particle Exhaust in the Divertor Results in Low Pedestal Density and Peaked Density Profiles

- At $\beta_N = 2.8$:
 - Density gradient locally peaked near $\rho = 0.2$
 - Density gradient largest at $q_{min} = 1$

- At the maximum β_N, profile is broader and pedestal density is higher
The Scaling of the Thermal Pressure Peaking Factor Summarizes the Changes in the n, T Profiles with q_{min} and β_N

- At $\beta_N = 2.8$ pressure is less peaked at higher values of q_{core}
- Pressure peaking is significantly reduced at the maximum β_N
 - Little dependence on the q profile as all n, T profiles are relatively broad

$$f_p = \frac{n_e(0)T_e(0) + n_i(0)T_i(0)}{\langle n_eT_e + n_iT_i \rangle}$$
Calculated Bootstrap Current
At $\beta_N = 2.8$, J_{BS} is Peaked Near $\rho = 0.1$

At Maximum β_N, the J_{BS} Profile is Significantly Broadened

- $q_{\text{min}} = 1$: peaked $n_e \rightarrow \max J_{BS}$
- H-mode pedestal: no systematic variation of J_{BS} with q_{min} or q_{95}
 - $\partial / \partial \rho$ larger at lower q_{95} but $J_{BS} \propto q$
- Both temperature and density profiles broader at max β_N
- H-mode pedestal: J_{BS} profile width increases with q_{95}

![Computed bootstrap current density (A/cm²)]

$\beta_N = 2.8$

![Computed bootstrap current density (A/cm²)]

maximum β_N

$\frac{q_{\text{min}}}{q_{95}} = \frac{2}{4.5} = \frac{5.6}{6.8}$
The Dependence of f_{BS} on q_{core} is Comparable to the Dependence on q_{95}

- f_{BS} is maximum at the largest values of q_{95} and β_N.
- Reduced f_{BS} at highest q_{core}: n, T profile broadening and low achieved β_N.

$N_{open} = 2.8$

$N_{closed} = \text{max } \beta_N$
The Commonly Used Scaling $f_{BS} \propto \beta_p \propto \beta_N q_{95}$ is not the Best Description of the Results

- Offset at $q_{95} = 0$: q_{core} important
- Max β_N points below $\beta_N = 2.8$ data: reflects n, T profile changes

J.R.Ferron et al., 23rd IAEA Fusion Energy Conference, Daejon, Republic of Korea, 2010, EXS/P2-6
Scaling Function $f(q_{\text{core}}, q_{95}, f_p)$ Reflects the Observed Dependence of f_{BS}/β_N on q, n, T Profiles

- **Test case illustrates $J_{\text{BS}} \propto$ (local q value)**
 - Differs from experiment J_{BS} profiles
- **Plasma divides into two regions:**
 - Inner half: $J_{\text{BS}} \propto q_{\text{core}}$
 - Outer half: $J_{\text{BS}} \propto q_{95}$

Two regions \rightarrow scaling function with separate q_{core} and q_{95} terms
- Opposite scaling of $\nabla n, \nabla T$ with f_p in the inner and outer regions
 - Opposite signs for α_{core} and α_{95}

Bootstrap current computed using constant n, T profiles (A/cm^2)

\[
\frac{f_{\text{BS}}}{\beta_N \text{thermal}} = A q_{\text{core}} f^\alpha_{\text{core}} + B q_{95} f^\alpha_{95}
\]

J.R.Ferron et al., 23rd IAEA Fusion Energy Conference, Daejeon, Republic of Korea, 2010, EXS/P2-6
Total Noninductively Driven Current
The Calculated f_{Ni} Increases with Both q_{core} and q_{95}

- Result of combined changes in f_{BS} and f_{NBCD}
- One exception: $q_{\text{core}} = 1.8$, $q_{95} = 6.8$ where max β_N is low

f_{NBCD} increases with q_{core}
- Higher T_e, lower n_e

J.R. Ferron et al., 23rd IAEA Fusion Energy Conference, Daejon, Republic of Korea, 2010, EXS/P2-6
\(q_{95} = 6.8 \) Discharges are the Closest to \(f_{NI} = 1 \), \(J_{NI} \) and J Profile Shapes are Best Matched at \(q_{core} \geq 1.4 \)

- **\(J_{BS} \) profiles at max \(\beta_N \) are roughly uniform while J profile is peaked**
 - Externally driven current (\(J_{CD} \)) required at \(\rho < 0.8 \)
 - \(J_{NBCD} \) profile aligns well with J inside \(\rho < 0.8 \)
- **Required \(J_{CD} \) near the axis is very large for \(q_{core} \approx 1 \)**
- **At the highest \(q_{core} \), possibility of \(J_{NI} \) overdrive near the axis**
To Achieve $f_{NI} = 1$ at $q_{95} \approx 5$, Significantly Increased J_{NI} Located Off Axis is Required

$q_{95} \approx 5$ required for sufficient fusion gain in a reactor or for ITER steady-state mission.

In this example:

- $f_{BS} \approx 0.39$, $f_{NI} \approx 0.6$

For $f_{NI} = 1$ in this example (compared to $q_{95} = 6.8$):
- Factor 2 additional J_{NI} is required
- >factor 3 additional total noninductive current is required
Paths to Higher f_{BS} at Fixed q_{95} are Increased β_N, Increased q_{core} or Increased Gradients

- **Increase β_N limit by broadening P profile**
 - n, T profiles broaden as β_N is increased
 - β_N limits may be higher than calculated
 - Off-axis beam injection to broaden fast ion pressure profile
 - f_p total (here ≈ 3.3) closer to f_p thermal (here ≈ 2.6)
 - Broader P moves gradients and J_{BS} off-axis

- **q_{min} controllable with external CD**
 - Choose high q_{min} to increase J_{BS}, reduce external CD requirement
 - Compatible with off-axis beam injection

- **Increasing gradients (larger f_p) reduces β_N limit**
 - Focus on reduced n_e, increased T_e to increase CD and J_{BS}
Other DIII-D Discharges Have Demonstrated Higher f_{BS} with Decreased n_e^{ped} and Increased T_e

- Illustrated by comparison to a discharge from a 2008 AT-style discharge with $f_{BS} = 0.7$, same q profile, $\beta_N = 3.1$
- Average n_e lower, but still with substantial core density gradient
- Higher T_e maintains P_e, J_{BS}
- Reduced n_e, increased T_e increases J_{CD}
- Possible fast ion diffusion can reduce J_{NBCD}
 - Curve in red assumes 1 m2/s
At $\beta_N = 2.8$, T_e, T_i profiles broaden with increased q_{min}

Increasing β_N broadens all profiles

At high β_N, core $J_{BS} < J$ with ~uniform profile
- No systematic dependence on the q profile

Peaked profile of J_{CD} needed so that J_{NI} matches J

$q_{95} > 6$ is the best choice for $f_{NI} = 1$ with the present DIII-D external current drive sources
- Planned off-axis NBCD, ECCD are good matches to the current drive requirements

Path to $f_{NI} = 1$ at $q_{\text{min}} \approx 5$ is increased β_N and T_e,
reduced n_e, relatively high q_{min}