#### Optimization of the Safety Factor Profile for High Noninductive Current Fraction Discharges in DIII-D

#### by J.R. Ferron

#### With

C.T. Holcomb<sup>2</sup>, T.C. Luce<sup>1</sup>, P.A. Politzer<sup>1</sup>, F. Turco<sup>3</sup>, A.E. White<sup>3</sup>, J.C. DeBoo<sup>1</sup>, E.J. Doyle<sup>4</sup>, A.W. Hyatt<sup>1</sup>, R.J. La Haye<sup>1</sup>, M. Murakami<sup>5</sup>, T.W. Petrie<sup>1</sup>, C.C. Petty<sup>1</sup>, T.L. Rhodes<sup>4</sup>, L. Zeng<sup>4</sup>

#### <sup>1</sup>General Atomics <sup>2</sup>Lawrence Livermore National Laboratory

<sup>3</sup>Oak Ridge Institute for Science & Education <sup>4</sup>University of California, Los Angeles <sup>5</sup>Oak Ridge National Laboratory

#### Presented at the Twenty-third IAEA Fusion Energy Conference Daejeon, Republic of Korea

October 11-16, 2010



### Introduction



J.R.Ferron et al. , 23<sup>rd</sup> IAEA Fusion Energy Conference, Daejon, Republic of Korea, 2010, EXS/P2-6

#### In a Steady-State Tokamak the q Profile is Closely Coupled to Both Transport Coefficients and Noninductive Current Sources

Bootstrap: depends on n, T profiles, local q

$$\left\langle \left\langle J_{BSB} \right\rangle \right\rangle = -\frac{Fq}{B_{T0}\rho} \left[ e^{\frac{\partial n_e}{\partial \rho} L_{31}} + n_e \frac{\partial T_e}{\partial \rho} (L_{31} + L_{32}) + T_i \frac{\partial n_i}{\partial \rho} L_{31} + n_i \frac{\partial T_i}{\partial \rho} (L_{31} + \alpha L_{34}) \right]$$

- Transport: depends on the q profile and determines the n, T profiles
- Steady-state: at high  $f_{BS}$ , the q profile is largely determined by the  $J_{BS}$  profile
- Stability limit:
  - Limits on pressure depend on the q profile
  - Reducing n, T gradients increases the  $\beta_N$  limit
- Presently this complex interdependence is difficult to understand using only models



### n, T Profiles were Measured vs q Profile at $\beta_N = 2.8$ and at the Maximum $P_{beam}$ , then $J_{BS}$ , $f_{BS}$ , $J_{NI}$ , $f_{NI}$ were Calculated

- q<sub>min</sub> ≈ 1, 1.5, 2, q<sub>95</sub> ≈ 4.5, 5.6, 6.8
- Measured and calculated profiles averaged during phase of approximately constant  $\beta_N$ 
  - 8 Safety factor (q)  $\beta_{N} = 2.8$ 6 4 0 0.0 0.2 0.4 0.8 0.6 1.0 normalized radius
- Maximum  $\beta_N$  close to the calculated ideal-wall n = 1 stability limit





### **Temperature and Density Profiles**



J.R.Ferron et al. , 23rd IAEA Fusion Energy Conference, Daejon, Republic of Korea, 2010, EXS/P2-6

### $T_e$ and $T_i$ Profiles Broaden as $q_{min}$ is Increased ( $\beta_N$ = 2.8)





## At the Maximum Achieved $\beta_N$ , the Temperature Profiles are Nearly Independent of $q_{min}$



- Profiles at q<sub>min</sub> ≈1 and ≈1.5 are significantly broader at higher β<sub>N</sub>
- Temperature dependence on q<sub>95</sub> is still present



#### Pumping of the Particle Exhaust in the Divertor Results in Low Pedestal Density and Peaked Density Profiles



At 
$$\beta_{\rm N}$$
 = 2.8:

- Density gradient locally peaked near  $\rho = 0.2$
- Density gradient
  largest at q<sub>min</sub> = 1
- At the maximum  $\beta_{N}$ , profile is broader and pedestal density is higher



## The Scaling of the Thermal Pressure Peaking Factor Summarizes the Changes in the n, T Profiles with $q_{min}$ and $\beta_N$



- At  $\beta_{\rm N}$  = 2.8 pressure is less peaked at higher values of  $q_{\rm core}$
- Pressure peaking is significantly reduced at the maximum  $\beta_{N}$ 
  - Little dependence on the q profile as all n, T profiles are relatively broad

$$f_p = \left[ n_e(0)T_e(0) + n_i(0)T_i(0) \right] / \left\langle n_e T_e + n_i T_i \right\rangle$$



### **Calculated Bootstrap Current**



J.R.Ferron et al. , 23rd IAEA Fusion Energy Conference, Daejon, Republic of Korea, 2010, EXS/P2-6

#### At $\beta_{N} = 2.8$ , $J_{BS}$ is Peaked Near $\rho = 0.1$ At Maximum $\beta_{N}$ , the $J_{BS}$ Profile is Significantly Broadened

- $q_{min} = 1$ : peaked  $n_e \rightarrow max J_{BS}$
- H-mode pedestal: no systematic variation of J<sub>BS</sub> with q<sub>min</sub> or q<sub>95</sub>



normalized radius

- Both temperature and density profiles broader at max  $\beta_N$
- H-mode pedestal: J<sub>BS</sub> profile width increases with q<sub>95</sub>





J.R.Ferron et al. , 23rd IAEA Fusion Energy Conference, Daejon, Republic of Korea, 2010, EXS/P2-6

# The Dependence of $f_{BS}$ on $q_{core}$ is Comparable to the Dependence on $q_{95}$





# The Commonly Used Scaling $f_{BS} \propto \beta_P \propto \beta_N q_{95}$ is not the Best Description of the Results



- Offset at q<sub>95</sub> = 0: q<sub>core</sub> important
- Max  $\beta_N$  points below  $\beta_N$  = 2.8 data: reflects n, T profile changes



# Scaling Function f( $q_{core}$ , $q_{95}$ , $f_p$ ) Reflects the Observed Dependence of $f_{BS}/\beta_N$ on q, n, T Profiles

- Test case illustrates  $J_{BS} \propto$  (local q value)
  - Differs from experiment J<sub>BS</sub> profiles
- Plasma divides into two regions:
  - Inner half:  $J_{BS} \propto q_{core}$
  - Outer half:  $J_{BS} \propto q_{95}$



- Two regions → scaling function with separate q<sub>core</sub> and q<sub>95</sub> terms
- Opposite scaling of ∇n, ∇T with f<sub>p</sub> in the inner and outer regions



NATIONAL FUSION FACILITY

### **Total Noninductively Driven Current**



J.R.Ferron et al. , 23<sup>rd</sup> IAEA Fusion Energy Conference, Daejon, Republic of Korea, 2010, EXS/P2-6

### The Calculated f<sub>NI</sub> Increases with Both q<sub>core</sub> and q<sub>95</sub>

- **Result of combined changes** in f<sub>BS</sub> and f<sub>NBCD</sub>
- One exception:  $q_{core} = 1.8$ ,  $q_{95}$  = 6.8 where max  $\beta_{N}$  is
- 0.**Jow** Noninductive current fraction 0.8

f<sub>NBCD</sub> increases with q<sub>core</sub> Higher T<sub>e</sub>, lower n<sub>e</sub>





0.7

0.6

0.5

0.4

1.0

1.2

#### $q_{95}$ = 6.8 Discharges are the Closest to $f_{NI}$ = 1, J<sub>NI</sub> and J Profile Shapes are Best Matched at $q_{core} \ge 1.4$



- $J_{BS}$  profiles at max  $\beta_{N}$  are roughly uniform while J profile is peaked
  - Externally driven current (J $_{\text{CD}}$ ) required at  $\rho$  <0.8
  - $J_{NBCD}$  profile aligns well with J inside  $\rho$  <0.8
- Required  $J_{CD}$  near the axis is very large for  $q_{core} \approx 1$
- At the highest  $q_{core'}$  possibility of  $J_{NI}$  overdrive near the axis



#### To Achieve $f_{NI} = 1$ at $q_{95} \approx 5$ , Significantly Increased $J_{NI}$ Located Off Axis is Required



- q<sub>95</sub> ≈ 5 required for sufficient fusion gain in a reactor or for ITER steady-state mission
- In this example:
  f<sub>BS</sub> ≈ 0.39, f<sub>NI</sub> ≈ 0.6
- For  $f_{NI} = 1$  in this example (compared to  $q_{95} = 6.8$ ):
  - Factor 2 additional J<sub>NI</sub> is required
  - >factor 3 additional total noninductive current is required



### Paths to Higher $f_{BS}$ at Fixed $q_{95}$ are Increased $\beta_{N}$ , Increased $q_{core}$ or Increased Gradients

- Increase  $\beta_N$  limit by broadening P profile
  - n, T profiles broaden as  $\beta_N$  is increased
    - $-\beta_N$  limits may be higher than calculated
  - Off-axis beam injection to broaden fast ion pressure profile
    - $f_{p \text{ total}}$  (here  $\approx 3.3$ ) closer to  $f_{p \text{ thermal}}$  (here  $\approx 2.6$ )
  - Broader P moves gradients and J<sub>BS</sub> off-axis

#### q<sub>min</sub> controllable with external CD

- Choose high q<sub>min</sub> to increase J<sub>BS</sub>, reduce external CD requirement
- Compatible with off-axis beam injection
- Increasing gradients (larger  $f_p$ ) reduces  $\beta_N$  limit
  - Focus on reduced  $n_e$ , increased  $T_e$  to increase CD and  $J_{BS}$



# Other DIII-D Discharges Have Demonstrated Higher $\rm f_{BS}$ with Decreased $\rm n_e^{ped}$ and Increased $\rm T_e$



- Illustrated by comparison to a discharge from a 2008 AT-style discharge with  $f_{BS} = 0.7$ , same q profile,  $\beta_N = 3.1$
- Average n<sub>e</sub> lower, but still with substantial core density gradient
- Higher T<sub>e</sub> maintains P<sub>e</sub>, J<sub>BS</sub>
- Reduced n<sub>e</sub>, increased T<sub>e</sub> increases J<sub>CD</sub>
- Possible fast ion diffusion can reduce J<sub>NBCD</sub>
  - Curve in red assumes 1 m<sup>2</sup>/s







J.R.Ferron et al. , 23<sup>rd</sup> IAEA Fusion Energy Conference, Daejon, Republic of Korea, 2010, EXS/P2-6

### Systematic Dependence of the $n_e$ , $T_e$ , $T_i$ Profile Shapes on the q Profile and $\beta_N$ Strongly Affects the Bootstrap Current

- At  $\beta_{\rm N}$  = 2.8, T<sub>e</sub>, T<sub>i</sub> profiles broaden with increased q<sub>min</sub>
- Increasing  $\beta_N$  broadens all profiles
- At high β<sub>N</sub>, core J<sub>BS</sub><J with ~uniform profile</li>
  No systematic dependence on the q profile
- Peaked profile of J<sub>CD</sub> needed so that J<sub>NI</sub> matches J
- q<sub>95</sub> > 6 is the best choice for f<sub>NI</sub> = 1 with the present DIII-D external current drive sources
  - Planned off-axis NBCD, ECCD are good matches to the current drive requirements
- Path to  $f_{NI} = 1$  at  $q_{min} \approx 5$  is increased  $\beta_N$  and  $T_{e'}$  reduced  $n_{e'}$  relatively high  $q_{min}$



