Rapporteured Orals: EXC/2-4Ra and EXC/2-4Rb

L-H Transition Studies on DIII-D to Determine H-mode Access for Operational Scenarios in ITER (EXC/2-4Ra)

by P. Gohil, et al.

JET Helium-4 ELMy H-mode Studies (EXC/2-4Rb)

by D.C. McDonald, et al.

Presented at Twenty-Third IAEA Fusion Energy Conference Daejeon, Republic of Korea

October 11-16, 2010

EXC/2-4Ra: P. Gohil, et al.

P. Gohil, T.E. Evans, M.E. Fenstermacher, J.R. Ferron, D.C. McDonald, T.H. Osborne, J.M. Park, O. Schmitz, J.T. Scoville and E.A. Unterberg

EXC/2-4Rb: D.C. McDonald, et al.

D.C. McDonald, G. Calabro, M. Beurskens, I. Day, E. de la Luna, S. Devaux, T. Eich, N. Fedorczak, O. Ford, W. Fundamenski, C. Giroud, P. Gohil, M. Lennholm, J. Lonnroth, P.J. Lomas, G.P. Maddison, C.F. Maggi, I. Nunes, G. Saibene, R. Sartori, W. Studholme, E. Surrey, I. Voitsekhovitch, K-D. Zastrow, and JET-EFDA contributors

Background/Motivation

 Can H-mode be achieved in the first (non-nuclear) phase of ITER operations with He (and/or H) plasmas ?

- Need H-mode to test ELM mitigation techniques and hardware in ITER environment

- DIII-D experiments performed with balanced NBI (i.e. ~zero torque) and ECH in H, D and He plasmas (all reference to He imply ⁴He)
- JET experiments performed with NBI and ICRH in D and He plasmas
- Examine physical trends not included in H-mode power threshold (P_{TH}) scaling
- Determine methods to reduce the H-mode power threshold and extrapolate to ITER
- Quality of H-mode performance dependent on input power above threshold power
 - Affects pedestal behavior, ELM characteristics, etc

The X-point Height has a Strong Effect on the H-mode Power Threshold for H, D and He

- Effect previously observed on DIII-D and other devices
- First systematic study of effect for H, D and He

- Edge E_r shear and edge magnetic shear profiles show no significant change for low and high X-point locations
- Preliminary analysis indicates edge neutrals may be affecting the power threshold

The X-point Height has a Strong Effect on the H-mode Power Threshold for H, D and He

- Effect previously observed on DIII-D and other devices
- First systematic study of effect for H, D and He

H-mode power threshold scaling for D plasmas

- P_{TH} , SCAL08 (D) = 0.049 $n_e^{0.72} B_T^{0.80} S^{0.94}$ (units: 10²⁰ m⁻³, T, m²)
- X-point dependence is not included in the power threshold scalings
 - Results in factor of 2 difference between P_{TH} at low X-point and the scaling prediction
- Edge E_r shear and edge magnetic shear profiles show no significant change for low and high X-point locations
- Preliminary analysis indicates edge neutrals may be affecting the power threshold

Difference in the H-mode Power Threshold Between He and D Plasmas Decreases at Higher Densities

• He and D plasmas ($I_p = 1.0 \text{ MA}, B_T = 1.65 \text{ T}$)

- Balanced NBI (i.e. zero torque) at same ion species as plasma species
 (D NBI → D; He NBI → He)
- ECH
- High X-point location
- At low densities (<3x10¹⁹ m⁻³)
 P_{TH} (He) ~1.5-2 P_{TH} (D)
- At high densities (>3x10¹⁹ m⁻³)
 P_{TH} (He) ~1-1.5 P_{TH} (D)

Difference in the H-mode Power Threshold Between He and D Plasmas Decreases at Higher Densities

- He and D plasmas ($I_p = 1.0 \text{ MA}, B_T = 1.65 \text{ T}$)
 - Balanced NBI (i.e. zero torque) at same ion species as plasma species
 (D NBI → D; He NBI → He)
 - ECH
 - High X-point location
- At low densities (<3x10¹⁹ m⁻³)
 P_{TH} (He) ~1.5-2 P_{TH} (D)
- At high densities (>3x10¹⁹ m⁻³)
 P_{TH} (He) ~1-1.5 P_{TH} (D)
- Lowering the X-point will move all curves significantly downwards with respect to the scaling

Application of Strong Resonant n=3 RMP Fields Increase PTH in Helium Plasmas

• n=3 resonant magnetic perturbations (RMPs) applied by in vessel coils (I-coils)

Application of Strong Resonant n=3 RMP Fields Increase PTH in Helium Plasmas

- n=3 resonant magnetic perturbations (RMPs) applied by in vessel coils (I-coils)
- Stronger resonant components lead to higher PTH
- Similar effect observed with ECH

For D Plasmas, there is a Minimum Required RMP Field Before P_{TH} Increases

• Effect on P_{TH} observed for $\delta B/B_T > \sim 3x10^{-4}$

For D Plasmas, there is a Minimum Required RMP Field Before P_{TH} Increases

- Effect on P_{TH} observed for $\delta B/B_T > \sim 3x10^{-4}$
- Determined for both ECH and balanced D-NBI (plasma shape different to He plasma study)

2009 JET ⁴He campaign

 In JET, L-H transitions followed by high f_{ELM} phase identified as Type III, which is then followed by a transition to Type I ELMs

L-H threshold

- L-H power threshold is not observed to change with ⁴He concentration: $P_{L-H}/P_{TH,SCAL(08)} \approx 1.4$
- ⁴He L-H power threshold is significantly higher than in D at lower densities

D C McDonald

P_{Type I}/P_{TH,SCAL(08)}(⁴He) = 1.4-1.6

P_{Type I}/P_{TH,SCAL(08)}(D) = 1.2-1.8

Low $\tau_{\rm F}$ in ⁴He associated with low p_{pe}

- In matched ⁴He/D pair
 - W_{th}(⁴He)/W_{th}(D)=0.6-0.8

 $p_{e,ped}(^{4}He)/p_{e,ped}(D)=0.6-0.8$

• Not purely an isotope effect as ⁴He discharges had high n_{neut} and some ⁴He discharges had high P_{rad}/P_{loss} <30%.

 \Rightarrow improved $\tau_{E}(^{4}He)/\tau_{E}(D)$ possible

Type I ELM divertor heat loads

• ELM heat loads: ⁴He and D have similar widths, but with ⁴He ELMs having much longer arrival times – see W Fundamenski, EXD/P3-11,Wed am

RMPs did not mitigate ⁴He ELMs. Believed to be related to the high n_{neut} in ⁴He rather than an isotope effect – see E de la Luna oral, EXC/8-4, Fri

ITER predictions

P _{L-H} /P _{TH,SCAL(08)} (⁴ He) = 1-1.4
P _{I-III} /P _{TH,SCAL(08)} (⁴ He) = 1.4-1.6
P _{L-H} /P _{TH,SCAL(08)} (H) = 2
P _{I-III} /P _{TH,SCAL(08)} (H) = 3?
H _{98(y,2)} (⁴ He)=0.6-0.8

ITER Half-field (7.5MA/2.65T) baseline

			Threshold power			
			^₄ He plasma		H plasma	
	<n<sub>e> (10²⁰ m⁻³)</n<sub>	f _{Gr}	(MW)	95% interval (MW)	(MW)	95% interval (MW)
L-H	0.25	0.42	18-25	12-40	37	20-66
L-H	0.5	0.85	30-42	20-65	60	33-108
Type I	0.5	0.85	42-48	23-86	90?	

• Existing physics base predicts hydrogen Type I ELMy H-mode operation is outside of maximum design power levels (73MW)

• ⁴He Type I ELMy H-mode operation is within design power levels

Summary

- Strong dependence of P_{TH} on the X-point height at the divertor for H, D and He plasmas (not included in P_{TH} scaling)
- The difference between the H-mode threshold power (P_{TH}) for He and D plasmas decreases at higher densities
- Resonant magnetic perturbations (n=3) increase P_{TH} in He and D plasmas
- Scan from D to He in JET showed no change in L-H power threshold, but density dependence of L-H power threshold in He was different from that in D
- Type I ELM threshold was found to be similar for D and He at approximately 1.5 times the ITPA 2008 L-H threshold scaling for D
- ITPA 2008 scaling predicts type I ELMy H-mode operation is <u>unlikely</u> in H, but <u>likely</u> in He
- Essential to include certain effects (e.g. X-point) and determine underlying physics of all known effects for reliable predictions by H-mode power threshold scalings

