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Experiments Show When Non-ideal Effects Modify 3D 
Equilibria and Deliver Evidence for Kinetic RWM Stabilization  

Main results 

•  Linear ideal MHD describes 
n=1 equilibria as long as 

  Plasma rotation is 
sufficiently fast 

  Beta is sufficiently low 

•  Kinetic effects explain 
resistive wall mode (RWM) 
stability 

➜ Opens possibility of passive RWM stabilization even at low plasma 
rotation, i.e. under reactor conditions 
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Three Dimensional Tokamak Equilibria and RWM Stability 
Share the Same Physics Basis 
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I-coil only! I-coil + stable plasma! Unstable plasma (no I-coil)!
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Three Dimensional Tokamak Equilibria and RWM Stability 
Share the Same Physics Basis 

➜ Both are a quasi-static global perturbation 
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•  Ideal MHD force balance: 

•  Axisymmetry (2D)  
-  Grad-Shafranov equation 

solved by various codes 

•  Non-axisymmetric equilibrium 
(3D)  

-  VMEC [Hirshman, Betancourt, 
J. Comput. Phys. 1991] 

-  Linearize force balance 

+  MARS-F [Liu et al., Phys. 
Plasmas 2000] 

+  IPEC [Park, et al., Phys. 
Plasmas 2007]  

Extend Ideal MHD 2D Equilibrium Model to 3D 

€ 

J × B =∇P

€ 

δJ × B + J × δB =∇δP
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Comparison with Magnetic Measurements Shows that 
Ideal MHD Can Quantitatively Describe 3D Equilibria 

[M.J. Lanctot, et al., Phys. Plasmas 2010] 

•  Perturb plasma with an externally applied n=1 field (δB/BT≤10-3) 

I-coil!

Upper I-coil"

Lower I-coil"
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Comparison with Magnetic Measurements Shows that 
Ideal MHD Can Quantitatively Describe 3D Equilibria 

[M.J. Lanctot, et al., Phys. Plasmas 2010] 

•  Perturb plasma with an externally applied n=1 field (δB/BT≤10-3) 

Bp probes"

Br loops"

Plasma!
only!

•  Toroidal arrays of Bp and Br sensors measure amplitude and toroidal phase 
of the n>0 plasma response 
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Ideal MHD 3D Equilibrium Assumes Perfect Shielding 
of Resonant Fields 

➜ Magnetic topology of nested flux surfaces is preserved 

•  Resonant components 

                with 
 of the perturbed field are 
zero 
-  A finite resonant 

component would 
lead to an island 
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m = nq
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δBmn
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Linear Ideal MHD Can Describe 3D Equilibria as Long as 
the Plasma Rotation is Sufficiently Large 

•  Measure response to n=1 I-coil field 
in magnetic braking experiment 

•  For “large” rotation 

  δBplas is independent of rotation 
  δBplas is consistent with ideal MHD 

•  After the rotation has collapsed 

  δBplas deviates from ideal MHD 
  A magnetic island forms 

•  Consistent with shielding as long as 
Ωτrec>>1  [Fitzpatrick, Nucl. Fusion 1993] 

•  Resonant braking torque indicates a 
local deviation from ideal MHD 
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Linear Ideal MHD Can Describe 3D Equilibria as Long as  
Beta is Well Below the Ideal MHD No-wall Limit 

•  Ideal MHD starts to 
overestimate δB at ~80% 
of the no-wall limit βN,nw 
-  Diverges for  

βN=βN,nw 
-  Predicts instability 

for βN>βN,nw 

[M.J. Lanctot, et al., Phys. Plasmas 2010] 
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Observed RWM Stability Above the No-wall Limit has 
Long Shown the Importance of Non-ideal Effects  

•  Tokamaks routinely exceed the ideal MHD no-wall stability limit 
-  Originally associated with fast toroidal plasma rotation 

•  Ideal MHD RWM unstable 
when β>βnw 

–  Energy principle [Haney, 
Freidberg, Phys. Fluids B 1989] 

€ 

γτW = −
δWnw

δW iw

Perturbed energy 
assuming an ideal wall"

Perturbed energy 
assuming no wall"

RWM growth rate 
normalized with 
inverse wall time"
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DIII-D Discharges Exceed the No-wall Limit with 
a Wide Range of Rotation Profiles 

•  Vary neutral beam torque TNBI from 1.5 to 8.0 Nm while keeping βN ≈2.3 
(>βN,nw)  

ωE:  Toroidal rotation of the Er=0 
reference frame 
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DIII-D Discharges Exceed the No-wall Limit with 
a Wide Range of Rotation Profiles 

•  Vary neutral beam torque TNBI from 1.5 to 8.0 Nm while keeping βN ≈2.3 
(>βN,nw)  

ωE:  Toroidal rotation of the Er=0 
reference frame 

0.2-1.5%!

•  In NSTX the RWM becomes unstable at “intermediate” rotation values 
➜ S.A. Sabbagh, et al, next talk  
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Wave-particle Interaction Can Lead to an Exchange of 
Energy Between the RWM and Particles  

•  Important particle frequencies are 

–  Transit frequency of passing particles: 
 [Bondeson, Chu, Phys. Plasmas 1996] 

–  Bounce frequency of trapped particles: 
 [Bondeson, Chu, Phys. Plasmas 1996] 

–  Precession drift frequency of trapped particles: 
 [Hu, Betti, Phys. Rev. Lett. 2004] 

€ 

ωD ~ qrL
r
Vth

R
 <<  ω b

€ 

ω b ~ r
2R

Vth

qR
  <  ω t

€ 

ω t ~
Vth

qR
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Perturbed Kinetic Energy Can Be Calculated with 
the MISK Code* 

•  Energy principle has been extended to include kinetic effects [Hu, Betti, 
Phys. Rev. Lett. 2004] 

•  The perturbed kinetic energy δWK has the form (for trapped particles) 

  

€ 

δWK
T   ∝  

ω*N +
 
ε − 3 2( )ω*T +ωE −ωRWM

ωD + lω b +ωE −ωRWM
 

l=-∞

+∞

∑

*[Berkery, et al., Phys. Plasmas 2010]	



€ 

γτW = −
δWnw +δWK

δW iw +δWK

Precession 
drift	



Bounce 
frequency	



∝ Plasma 
rotation	



Mode 
rotation	
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Perturbed Kinetic Energy Can Be Calculated with 
the MISK Code* 

•  Energy principle has been extended to include kinetic effects [Hu, Betti, 
Phys. Rev. Lett. 2004] 

•  The perturbed kinetic energy δWK has the form (for trapped particles) 

•  MISK assumes structure of a marginally stable RWM (perturbative 
approach) 

-  Self-consistent approach implemented in MARS-K code 
 [Liu, et al., Phys. Plasmas 2008] 

  

€ 

δWK
T   ∝  

ω*N +
 
ε − 3 2( )ω*T +ωE −ωRWM

ωD + lω b +ωE −ωRWM
 

l=-∞

+∞

∑

*[Berkery, et al., Phys. Plasmas 2010]	



✕	


✕	



Small when ωE = -<ωD> or ωE = -lωb	



ωRWM≈ 0	


€ 

γτW = −
δWnw +δWK

δW iw +δWK
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Kinetic Stability Model Can Explain the Stability Over the 
Entire Range of Rotation Profiles 

•  Thermal particles alone are not sufficient to explain RWM stability 
•  Kinetic model has to include fast ions from the NBI heating to be 

consistent with the experiment 
-  Fast ions constitute ~20% of the kinetic energy 

Experimental"
rotation range"

∼ωD! ∼ωb!
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Use Plasma Response to an External n=1 field, i.e. 3D 
Equilibrium, to Probe the Damping Rate 

•  Amplitude of plasma response largest 
at intermediate plasma rotation 

•  Phase shift of plasma response with 
respect to external field largest at  

•  Single mode model links γRWM and 
ωRWM (e.g. from MISK) to amplitude 
and phase of δBplas 

 [Reimerdes, et al., Phys. Rev. Lett. 2004] 

€ 

ωEτA q = 2( ) ≈ 0.9%

€ 

ωEτA q = 2( ) ≈ 0.6%
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Measured Plasma Response Reveals the Characteristics 
of Kinetic Stabilization 

*	

•  MISK modeling reproduces the 
characteristics of the measured 
dependence of δBplas on plasma 
rotation 
-  Uncertainty in the single mode 

coupling can lead to systematic 
shift of amplitude and phase 
shift 

➜  Increased stability at low rotation is 
a direct effect of resonance with the 
precession drift of trapped ions 
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Recent Results are an Important Step Towards a Quantitative 
Understanding of 3D Equilibria and RWM Stabilization 

•  A linear ideal model is adequate to describe 3D equilibria resulting from 
externally applied 3D fields (δB/BT≤10-3) as long as  
-  Plasma rotation maintains the shielding currents at resonant surfaces 

-  Beta is well below the ideal MHD no-wall stability limit 

•  Kinetic models explain the observed RWM stability above the ideal MHD 
no-wall limit provided that fast ions are taken into account  

•  Measured rotation dependence of the n=1 plasma response reveals the 
interaction of a quasi-static perturbation with the precession and bounce 
frequencies of trapped thermal ions  
➜ Direct evidence for the relevance of kinetic effects for RWM stability 

•  Quantitative validation of stability models is needed before relying on 
predictions of passive RWM stabilization in ITER 




