Non-ideal Modifications of 3D Equilibrium and Resistive Wall Mode Stability Models in DIII-D

By H. Reimerdes*

In collaboration with

J.W. Berkery, M.J. Lanctot, R.J. Buttery¹, M.S. Chu¹, A.M. Garofalo¹, J. Hanson, Y. In², R.J. La Haye¹, Y.Q. Liu³, G. Matsunaga⁴, G.A. Navratil, M. Okabayashi⁵, S.A. Sabbagh, O. Schmitz⁶, and E.J. Strait¹

¹General Atomics, San Diego, CA, USA
²FAR-TECH, Inc., San Diego, CA, USA
³EURATOM/CCFE Fusion Association, Abingdon, UK
⁴Japan Atomic Energy Agency, Naka, Japan
⁵Princeton Plasma Physics Laboratory, Princeton, NJ, U
⁶Forschungszentrum Jülich, Jülich, Germany

*Present address: CRPP-EPFL, Lausanne, Switzerland

Presented at the Twenty-third IAEA Fusion Energy Conference Daejeon, Republic of Korea October 11-16, 2010

Experiments Show When Non-ideal Effects Modify 3D Equilibria and Deliver Evidence for Kinetic RWM Stabilization

Main results

- Linear ideal MHD describes <u>n=1 equilibria</u> as long as
 - Plasma rotation is sufficiently fast
 - Beta is sufficiently low
- Kinetic effects explain resistive wall mode (RWM) stability

3D plasma response

→ Opens possibility of passive RWM stabilization even at low plasma rotation, i.e. under reactor conditions

Three Dimensional Tokamak Equilibria and RWM Stability Share the Same Physics Basis

Three Dimensional Tokamak Equilibria and RWM Stability Share the Same Physics Basis

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010

NATIONAL FUSION FACILI

Extend Ideal MHD 2D Equilibrium Model to 3D

- Ideal MHD force balance:
- Axisymmetry (2D)
 - Grad-Shafranov equation solved by various codes
- Non-axisymmetric equilibrium (3D)
 - **VMEC** [Hirshman, Betancourt, J. Comput. Phys. 1991]
 - Linearize force balance

 $\delta \vec{J} \times \vec{B} + \vec{J} \times \delta \vec{B} = \nabla \delta P$

- + MARS-F [Liu et al., Phys. Plasmas 2000]
- + **IPEC** [Park, et al., Phys. Plasmas 2007]

1.5 1.0 0.5 0.0 Pressure P (kPa) 120 100 80 60 40 20 Current density <J_{||}> A/cm² 6 Safety factor q 4 2

0.2

0.0

0.4

0.6

1.0

0.8

 $\vec{J} \times \vec{B} = \nabla P$

DIII-D 141090@t=3000ms

[M.J. Lanctot, et al., Phys. Plasmas 2010]

• Perturb plasma with an externally applied n=1 field ($\delta B/B_T \le 10^{-3}$)

[M.J. Lanctot, et al., Phys. Plasmas 2010]

• Perturb plasma with an externally applied n=1 field ($\delta B/B_T \le 10^{-3}$)

[M.J. Lanctot, et al., Phys. Plasmas 2010]

• Perturb plasma with an externally applied n=1 field ($\delta B/B_T \le 10^{-3}$)

[M.J. Lanctot, et al., Phys. Plasmas 2010]

• Perturb plasma with an externally applied n=1 field ($\delta B/B_T \le 10^{-3}$)

 Toroidal arrays of B_p and B_r sensors measure <u>amplitude</u> and <u>toroidal phase</u> of the n>0 plasma response

[M.J. Lanctot, et al., Phys. Plasmas 2010]

• Perturb plasma with an externally applied n=1 field ($\delta B/B_T \le 10^{-3}$)

 Toroidal arrays of B_p and B_r sensors measure <u>amplitude</u> and <u>toroidal phase</u> of the n>0 plasma response

Ideal MHD 3D Equilibrium Assumes Perfect Shielding of Resonant Fields

Resonant components

 δB_{mn} with m = nqof the perturbed field are zero

 A finite resonant component would lead to an island

→ Magnetic topology of nested flux surfaces is preserved

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010

Ideal MHD 3D Equilibrium Assumes Perfect Shielding of Resonant Fields

Resonant components

 δB_{mn} with m = nqof the perturbed field are zero

 A finite resonant component would lead to an island

→ Magnetic topology of nested flux surfaces is preserved

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010

Linear Ideal MHD Can Describe 3D Equilibria as Long as the Plasma Rotation is Sufficiently Large

- Measure response to n=1 I-coil field in magnetic braking experiment
- For "large" rotation
 - $\succ \delta B^{\text{plas}}$ is independent of rotation
 - > δB^{plas} is consistent with ideal MHD
- After the rotation has collapsed
 - $\succ \delta B^{\text{plas}}$ deviates from ideal MHD
 - A magnetic island forms
- Consistent with shielding as long as $\Omega \tau_{rec} >> 1$ [Fitzpatrick, Nucl. Fusion 1993]
- Resonant braking torque indicates a local deviation from ideal MHD

Linear Ideal MHD Can Describe 3D Equilibria as Long as the Plasma Rotation is Sufficiently Large

- Measure response to n=1 I-coil field in magnetic braking experiment
- For "large" rotation
 - $\succ \delta B^{\text{plas}}$ is independent of rotation
 - > δB^{plas} is consistent with ideal MHD
- After the rotation has collapsed
 - $\succ \delta B^{\text{plas}}$ deviates from ideal MHD
 - A magnetic island forms
- Consistent with shielding as long as $\Omega \tau_{rec} >> 1$ [Fitzpatrick, Nucl. Fusion 1993]
- Resonant braking torque indicates a local deviation from ideal MHD

Linear Ideal MHD Can Describe 3D Equilibria as Long as Beta is Well Below the Ideal MHD No-wall Limit

[M.J. Lanctot, et al., Phys. Plasmas 2010]

- Ideal MHD starts to overestimate δB at ~80% of the no-wall limit β_{N,nw}
 - Diverges for $\beta_N = \beta_{N,nw}$
 - Predicts instability for $\beta_{\text{N}}{>}\beta_{\text{N,nw}}$

Observed RWM Stability Above the No-wall Limit has Long Shown the Importance of Non-ideal Effects

- Tokamaks routinely exceed the ideal MHD no-wall stability limit
 - Originally associated with fast toroidal plasma rotation

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010

DIII-D Discharges Exceed the No-wall Limit with a Wide Range of Rotation Profiles

• Vary neutral beam torque \textit{T}_{NBI} from 1.5 to 8.0 Nm while keeping $\beta_{\text{N}} \approx \!\! 2.3$ (> $\!\beta_{\text{N,nw}}$)

DIII-D Discharges Exceed the No-wall Limit with a Wide Range of Rotation Profiles

• Vary neutral beam torque \textit{T}_{NBI} from 1.5 to 8.0 Nm while keeping $\beta_{\text{N}}\approx$ 2.3 (> $\beta_{\text{N,nw}}$)

DIII-D Discharges Exceed the No-wall Limit with a Wide Range of Rotation Profiles

• Vary neutral beam torque \textit{T}_{NBI} from 1.5 to 8.0 Nm while keeping $\beta_{\text{N}}\approx$ 2.3 (> $\beta_{\text{N,nw}}$)

- In NSTX the RWM becomes unstable at "intermediate" rotation values
 - → S.A. Sabbagh, et al, next talk

NATIONAL FUSION FACILIT

Wave-particle Interaction Can Lead to an Exchange of Energy Between the RWM and Particles

- Important particle frequencies are
 - Transit frequency of passing particles: [Bondeson, Chu, Phys. Plasmas 1996]
 - Bounce frequency of trapped particles: [Bondeson, Chu, Phys. Plasmas 1996]
 - Precession drift frequency of trapped particles: [Hu, Betti, Phys. Rev. Lett. 2004]

$$\omega_{t} \sim \frac{V_{th}}{qR}$$
$$\omega_{b} \sim \sqrt{\frac{r}{2R}} \frac{V_{th}}{qR} < \omega_{t}$$

 $\omega_{\rm D} \sim rac{qr_L}{r} rac{V_{th}}{R} \ll \omega_{\rm b}$

Perturbed Kinetic Energy Can Be Calculated with the MISK Code*

*[Berkery, et al., Phys. Plasmas 2010]

• Energy principle has been extended to include kinetic effects [Hu, Betti, Phys. Rev. Lett. 2004]

$$\gamma \tau_{\rm W} = -\frac{\delta W_{\rm nw} + \delta W_{\rm K}}{\delta W_{\rm iw} + \delta W_{\rm K}}$$

• The perturbed kinetic energy $\delta W_{\rm K}$ has the form (for trapped particles)

Perturbed Kinetic Energy Can Be Calculated with the MISK Code*

*[Berkery, et al., Phys. Plasmas 2010]

• Energy principle has been extended to include kinetic effects [Hu, Betti, *Phys. Rev. Lett.* 2004]

$$\gamma \tau_{\rm W} = -\frac{\delta W_{\rm nw} + \delta W_{\rm K}}{\delta W_{\rm iw} + \delta W_{\rm K}}$$

• The perturbed kinetic energy $\delta W_{\rm K}$ has the form (for trapped particles)

$$\delta W_{\rm K}^{\rm T} \propto \sum_{\rm I=-\infty}^{+\infty} \frac{\omega_{*N} + (\hat{\varepsilon} - 3/2)\omega_{*T} + \omega_{\rm E} - \omega_{\rm WM}}{\langle \omega_{\rm D} \rangle + l\omega_{\rm b} + \omega_{\rm E} - \omega_{\rm WM}} \qquad \omega_{\rm RWM} \approx 0$$

Small when $\omega_{\rm E} = -\langle \omega_{\rm D} \rangle$ or $\omega_{\rm E} = -l\omega_{\rm b}$

- MISK assumes structure of a marginally stable RWM (perturbative approach)
 - Self-consistent approach implemented in MARS-K code
 - [Liu, et al., Phys. Plasmas 2008]

Kinetic Stability Model Can Explain the Stability Over the Entire Range of Rotation Profiles

- Thermal particles alone are not sufficient to explain RWM stability
- Kinetic model has to include fast ions from the NBI heating to be consistent with the experiment
 - Fast ions constitute ~20% of the kinetic energy

H. Reimerdes, 23rd IAEA FEC, Oct. 11-16, 2010

Use Plasma Response to an External *n*=1 field, i.e. 3D Equilibrium, to Probe the Damping Rate

• <u>Amplitude</u> of plasma response largest at intermediate plasma rotation

 $\omega_{\rm E} \tau_{\rm A} (q=2) \approx 0.9\%$

• <u>Phase shift of plasma response with</u> respect to external field largest at

 $\omega_{\rm E} \tau_{\rm A} (q=2) \approx 0.6\%$

• Single mode model links γ_{RWM} and ω_{RWM} (e.g. from MISK) to amplitude and phase of δB^{plas}

[Reimerdes, et al., Phys. Rev. Lett. 2004]

Measured Plasma Response Reveals the Characteristics of Kinetic Stabilization

- MISK modeling reproduces the <u>characteristics</u> of the measured dependence of δB^{plas} on plasma rotation
 - Uncertainty in the single mode coupling can lead to systematic shift of amplitude and phase shift
- Increased stability at low rotation is a direct effect of resonance with the precession drift of trapped ions

Recent Results are an Important Step Towards a Quantitative Understanding of 3D Equilibria and RWM Stabilization

- A linear ideal model is adequate to describe 3D equilibria resulting from externally applied 3D fields ($\delta B/B_T \le 10^{-3}$) as long as
 - Plasma rotation maintains the shielding currents at resonant surfaces
 - Beta is well below the ideal MHD no-wall stability limit
- Kinetic models explain the observed RWM stability above the ideal MHD no-wall limit provided that fast ions are taken into account
- Measured rotation dependence of the *n*=1 plasma response reveals the interaction of a quasi-static perturbation with the precession and bounce frequencies of trapped thermal ions

→ Direct evidence for the relevance of kinetic effects for RWM stability

• Quantitative validation of stability models is needed before relying on predictions of passive RWM stabilization in ITER

