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Energetic particle (EP) transport from local high-n toroidal Alfvén eigenmodes (TAEs) and 
energetic particle modes (EPMs) has been simulated with the gyrokinetic code GYRO [1]. 
Linear and nonlinear simulations have identified a parameter range where the TAE and EPM are 
unstable alongside the well-known ion-temperature-gradient (ITG) and trapped-electron-mode 
(TEM) instabilities. A new eigenvalue solver in GYRO facilitates this mode identification. States 
of nonlinearly saturated local TAE/EPM turbulent intensity are identified, showing a “soft” 
transport threshold for enhanced energetic particle transport against the TAE/EPM drive strength 
parameter [(nEP/ne)(TEP/Te)(R/LnEP)]. The very long-wavelength TAE/EPM transport is likely 
saturated by nonlinear interaction with ITG/TEM-driven zonal flows. These fixed gradient length 
nonlinearly saturated states are accessible over a relatively narrow range of TAE/EPM drive 
strength. Within this range, and in the local limit employed, TAE/EPM driven transport more 
closely resembles driftwave microturbulent transport than “stiff” ideal MHD transport with a 
clamped critical pressure gradient.  At higher critical drive strength, nonlinear saturation fails 
(EP transport increases without limit and background transport decreases). Presumably saturation 
is obtained by (quasi-linear) relaxation of the EP pressure gradient to this critical gradient. 

Previously, GYRO was used to study 
turbulent transport of fusion-produced alpha 
particles from short-wave, electrostatic 
ITG/TEM turbulence [2]. The new work here 
treats EP transport from long-wave, EP-driven, 
Alfvénic TAE and EPM modes. Linear simu-
lations, including a new GYRO eigenvalue 
solver, have been used to track local growth 
rates and frequencies of these local high-n 
instabilities. Nonlinear simulations track the 
induced energy and particle transport in all 
species. All simulations are local, which is 
appropriate for sufficiently small ρ*=ρs/a where 
ρs=cs/Ωci is the ion sound gyroradius and a is 
the plasma radius. The short-wave ITG/TEM 
modes, whose driving gradients are kept in the 
simulation, are on the scale ρs. A radial density 
gradient in the sparse EP population drives 
TAE/EPM modes at much longer length scales 
— on the order of ρEP, the EP gyroradius. 
Figure 1 shows the kθ=nq/r spectrum of rates. 

The TAE and EPM are simultaneously 
destabilized primarily by the EP spatial pres-
sure gradient. Reduction of the background ion and electron gradients with fixed magnetic 
geometry (circular s-α with α=0) modestly lowers TAE/EPM growth rates. All length scales 
contribute to EP transport. However, as EP energy increases large perpendicular EP orbits par-
tially average out ITG/TEM fluctuations, decreasing transport [2]. EP transport from long-
wavelength TAE/EPM fluctuations shows no such reduction. 

Fig. 1: Linear frequency ω and growth rate γ for 
leading local modes with q=2, s=1, r/a=0.5, 
R/a=3, Ti=Te, TEP=100Te, nEP=0.025ne, 
a/LTi=a/LTe=3, a/Lni=a/Lne=1, a/LnEP=4, a/LTEP=0. 
Inset shows same data over a greater range. 
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Nonlinear simulations of 40 interacting 
modes were performed over a range of EP drive 
strengths, represented by the relative EP density 
nEP/ne. A clear onset of TAE/EPM fluctuations is 
observed as nEP/ne increases (Fig. 2). At suffi-
ciently weak nEP/ne drive, a state of finite satu-
rated TAE/EPM intensity can be found in GYRO. 
The nonlinear saturation mechanism is inter-
action of finite-kθ fluctuations with sheared kθ=0 
zonal flows. These zonal flows are driven pri-
marily by ITG/TEM transport, and the system 
fails to saturate when ITG/TEM turbulence is 
reduced either by reduction of background 
gradients or exclusion of modes in the ITG/TEM 
range. Systems with stronger TAE/EPM drive 
(nEP/ne > 0.8%) also fail to nonlinearly saturate 
for the parameters given. Proximity to the high-n 
ideal MHD ballooning mode stability limit, and 
the related “sub-critical” limit in GYRO [3], is a 
likely component in this failure to saturate in this 
particular case.  

In the range where fixed gradient  length 
nonlinear saturation is obtained, the onset of 
TAE/EPM transport is not “stiff.” Figure 3 shows 
a modest slope in the gyroBohm scaled EP diffu-
sion coefficient with TAE/EPM drive strength 
(nEP/ne above 0.5%) corresponding to a stiffness of 

€ 

S =1+ d lnDEP d ln z =1.5 . Unlike the ideal MHD 
high-n ballooning mode onset, the high-n local 
EP-driven TAE/EPM threshold does not appear to 
impose a clamped EP critical pressure gradient. At 
a higher and critical drive strength [nEP/ne above 
0.8%] fixed gradient nonlinear saturation fails (EP 
transport increases without limit and background 
plasma transport actually decreases) and presum-
ably the EP driving gradient relaxes to this critical 
EP pressure gradient. 
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Fig. 3: GyroBohm scaled diffusion coefficient 
of energetic particle density DEP/χgB vs. 
TAE/EPM drive strength parameter (black 
curve). Low-kθ linear growth rates shown for 
comparison (blue, right axis). Red dots and 
shaded areas had runaway at long times. 
Parameters same as in Fig. 1. 

Fig. 2: Time averaged fluctuation intensity per 
mode for nEP/ne=0.5% (below TAE/EPM 
threshold, black) and nEP/ne=0.8% (above 
TAE/EPM threshold, green). All other 
parameters the same as Fig. 1. Inset shows time 
traces of total finite-kθ fluctuation intensity. 


